The Phenomenology of Second-Level Inference: Perfumes in The Deductive Garden
Bulletin of the Section of Logic, Tome 49 (2020) no. 4, pp. 327-342.

Voir la notice de l'article provenant de la source Library of Science

We comment on certain features that second-level inference rules commonly used in mathematical proof sometimes have, sometimes lack: suppositions, indirectness, goal-simplification, goal-preservation and premise-preservation. The emphasis is on the roles of these features, which we call 'perfumes', in mathematical practice rather than on the space of all formal possibilities, deployment in proof-theory, or conventions for display in systems of natural deduction.
Keywords: second-level inference, suppositions, indirect inference, goal simplification, goal preservation, wlog, premise preservation
@article{BSL_2020_49_4_a0,
     author = {Makinson, David},
     title = {The {Phenomenology} of {Second-Level} {Inference:} {Perfumes} in {The} {Deductive} {Garden}},
     journal = {Bulletin of the Section of Logic},
     pages = {327--342},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a0/}
}
TY  - JOUR
AU  - Makinson, David
TI  - The Phenomenology of Second-Level Inference: Perfumes in The Deductive Garden
JO  - Bulletin of the Section of Logic
PY  - 2020
SP  - 327
EP  - 342
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a0/
LA  - en
ID  - BSL_2020_49_4_a0
ER  - 
%0 Journal Article
%A Makinson, David
%T The Phenomenology of Second-Level Inference: Perfumes in The Deductive Garden
%J Bulletin of the Section of Logic
%D 2020
%P 327-342
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a0/
%G en
%F BSL_2020_49_4_a0
Makinson, David. The Phenomenology of Second-Level Inference: Perfumes in The Deductive Garden. Bulletin of the Section of Logic, Tome 49 (2020) no. 4, pp. 327-342. http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a0/

[1] G. Gentzen, Untersuchungen über das logische Schliessen, Mathematische Zeitschrift, vol. 23 (1934), pp. 176–210, 405–431, DOI: http://dx.doi.org/10.1007/BF01201353 English translation: Investigation into logical deduction, pp. 68–131 of The Collected Papers of Gerhard Gentzen, ed. M. E. Szabo. North-Holland, Amsterdam, 1969.

[2] J. Harrison, Without loss of generality, [in:] S. Berghofer, T. Nipkow (eds.), Theorem-Proving in Higher Order Logics, vol. 5674 of Lecture Notes in Computer Science, Springer, Berlin (2009), pp. 43–59, DOI: http://dx.doi.org/10.1007/978-3-642-03359-9_3

[3] A. Indrzejczak, Natural Deduction, Hybrid Systems and Modal Logic, Springer, Dordrecht (2010), DOI: http://dx.doi.org/10.1007/978-90481-8785-0

[4] A. Indrzejczak, Natural Deduction, Internet Encyclopedia of Philosophy, (2015), URL: https://iep.utm.edu/nat-ded/ consulted 16.07.2020.

[5] S. Ja_skowski, On the rules of suppositions in formal logic, Studia Logica, vol. 1 (1934), pp. 1–32.

[6] D. Kalish, R. Montague, Logic: Techniques of Formal Reasoning, Harcourt Brace, New York (1964), also second edition with co-author G. Mar, Oxford University Press, 2001.

[7] J. Lucas, Introduction to Abstract Mathematics, 2nd ed., Rowman Little_eld, Maryland, USA (1990).

[8] D. Makinson, Sets, Logic and Maths for Computing, 3rd ed., Undergraduate Topics in Computer Science, Springer, London (2020), DOI: http://dx.doi.org/10.1007/978-1-4471-2500-6

[9] D. Makinson, Relevance-sensitive truth-trees, [in:] Alasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs, Outstanding Contributions to Logic, Springer, Berlin (2021), to appear.

[10] J. Pelletier, A brief history of natural deduction, History and Philosophy of Logic, vol. 20 (1999), pp. 1–31, DOI: http://dx.doi.org/10.1080/014453499298165

[11] J. Pelletier, A. P. Hazen, A history of natural deduction, [in:] D. Gabbay, F. J. Pelletier, E. Woods (eds.), Handbook of the History of Logic, vol. 11, North-Holland, Amsterdam (2012), pp. 341–414, DOI: http://dx.doi.org/10.1016/B978-0-444-52937-4.50007-1

[12] E. Schechter, Constructivism is di_cult, American Mathematical Monthly, vol. 108 (2001), pp. 50–54, DOI: http://dx.doi.org/10.1080/00029890.2001.11919720

[13] R. Sikorski, Boolean Algebras, 2nd ed., Springer, Berlin (1964), DOI: http://dx.doi.org/10.1007/978-3-662-01507-0