Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2020_49_3_a0, author = {Gordeev, Lew and Haeusler, Edward Hermann}, title = {Proof {Compression} and {NP} {Versus} {PSPACE} {II}}, journal = {Bulletin of the Section of Logic}, pages = {213--230}, publisher = {mathdoc}, volume = {49}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2020_49_3_a0/} }
Gordeev, Lew; Haeusler, Edward Hermann. Proof Compression and NP Versus PSPACE II. Bulletin of the Section of Logic, Tome 49 (2020) no. 3, pp. 213-230. http://geodesic.mathdoc.fr/item/BSL_2020_49_3_a0/
[1] S. Arora, B. Barak, Computational Complexity: A Modern Approach, 1st ed., Cambridge University Press, USA (2009).
[2] L. Gordeev, Proof compression and NP versus PSPACE. Part 2, CoRR, vol. abs/1907.03858 (2019), URL: http://arxiv.org/abs/1907.03858
[3] L. Gordeev, E. H. Haeusler, Proof Compression and NP Versus PSPACE, Studia Logica, vol. 107(1) (2019), pp. 53–83, DOI: http://dx.doi.org/10.1007/s11225-017-9773-5
[4] J. Holm, E. Rotenberg, M. Thorup, Planar Reachability in Linear Space and Constant Time, CoRR, vol. abs/1411.5867 (2014), URL: http://arxiv.org/abs/1411.5867
[5] J. Hudelmaier, An O(n log n)-Space Decision Procedure for Intuitionistic Propositional Logic, Journal of Logic and Computation, vol. 3(1) (1993), pp. 63–75, DOI: http://dx.doi.org/10.1093/logcom/3.1.63
[6] H. Ishihara, H. Schwichtenberg, Embedding classical in minimal implicational logic, Mathematical Logic Quarterly, vol. 62(1–2) (2016), pp. 94–101, DOI: http://dx.doi.org/10.1002/malq.201400099
[7] I. Johansson, Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus, Compositio Mathematica, vol. 4 (1937), pp. 119–136, URL: http://www.numdam.org/item/CM_1937__4__119_0
[8] C. H. Papadimitriou, Computational complexity, Addison-Wesley (1994).
[9] D. Prawitz, Natural Deduction: A Proof-theoretical Study, Almqvist Wiksell (1965).
[10] D. Prawitz, P.-E. Malmnäs, A Survey of Some Connections Between Classical, Intuitionistic and Minimal Logic, [in:] H. A. Schmidt, K. Schütte, H.-J. Thiele (eds.), Contributions to Mathematical Logic, vol. 50 of Studies in Logic and the Foundations of Mathematics, Elsevier (1968), pp. 215–229, DOI: http://dx.doi.org/10.1016/S0049-237X(08)70527-5
[11] R. Statman, Intuitionistic Propositional Logic is Polynomial-Space Complete, Theoretical Computer Science, vol. 9 (1979), pp. 67–72, DOI: http://dx.doi.org/10.1016/0304-3975(79)90006-9
[12] V. Svejdar, On the polynomial-space completeness of intuitionistic propositional logic, Archive for Mathematical Logic, vol. 42(7) (2003), pp. 711–716, DOI: http://dx.doi.org/10.1007/s00153-003-0179-x
[13] M. Thorup, Compact oracles for reachability and approximate distances in planar digraphs, Journal of the ACM, vol. 51(6) (2004), pp. 993–1024, DOI: http://dx.doi.org/10.1145/1039488.1039493