Inf-Hesitant Fuzzy Ideals in BCK/BCI-Algebras
Bulletin of the Section of Logic, Tome 49 (2020) no. 1.

Voir la notice de l'article provenant de la source Library of Science

Based on the hesitant fuzzy set theory which is introduced by Torra in the paper [12], the notions of Inf-hesitant fuzzy subalgebras, Inf-hesitant fuzzy ideals and Inf-hesitant fuzzy p-ideals in BCK/BCI-algebras are introduced, and their relations and properties are investigated. Characterizations of an Inf-hesitant fuzzy subalgebras, an Inf-hesitant fuzzy ideals and an Inf-hesitant fuzzy p-ideal are considered. Using the notion of BCK-parts, an Inf-hesitant fuzzy ideal is constructed. Conditions for an Inf-hesitant fuzzy ideal to be an Inf-hesitant fuzzy p-ideal are discussed. Using the notion of Inf-hesitant fuzzy (p-) ideals, a characterization of a p-semisimple BCI-algebra is provided. Extension properties for an Inf-hesitant fuzzy p-ideal is established.
Keywords: Inf-hesitant fuzzy p-ideal, p-semisimple BCI-algebra, Inf-hesitant fuzzy subalgebra, Inf-hesitant fuzzy ideal
@article{BSL_2020_49_1_a1,
     author = {Jun, Young Bae and Song, Seok-Zun},
     title = {Inf-Hesitant {Fuzzy} {Ideals} in {BCK/BCI-Algebras}},
     journal = {Bulletin of the Section of Logic},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2020_49_1_a1/}
}
TY  - JOUR
AU  - Jun, Young Bae
AU  - Song, Seok-Zun
TI  - Inf-Hesitant Fuzzy Ideals in BCK/BCI-Algebras
JO  - Bulletin of the Section of Logic
PY  - 2020
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2020_49_1_a1/
LA  - en
ID  - BSL_2020_49_1_a1
ER  - 
%0 Journal Article
%A Jun, Young Bae
%A Song, Seok-Zun
%T Inf-Hesitant Fuzzy Ideals in BCK/BCI-Algebras
%J Bulletin of the Section of Logic
%D 2020
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2020_49_1_a1/
%G en
%F BSL_2020_49_1_a1
Jun, Young Bae; Song, Seok-Zun. Inf-Hesitant Fuzzy Ideals in BCK/BCI-Algebras. Bulletin of the Section of Logic, Tome 49 (2020) no. 1. http://geodesic.mathdoc.fr/item/BSL_2020_49_1_a1/