Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2024_2_a8, author = {N. N. Yatskou and V. V. Apanasovich and V. V. Grinev}, title = {Simulation modelling of single nucleotide genetic polymorphisms}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {104--112}, publisher = {mathdoc}, volume = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a8/} }
TY - JOUR AU - N. N. Yatskou AU - V. V. Apanasovich AU - V. V. Grinev TI - Simulation modelling of single nucleotide genetic polymorphisms JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2024 SP - 104 EP - 112 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a8/ LA - ru ID - BGUMI_2024_2_a8 ER -
%0 Journal Article %A N. N. Yatskou %A V. V. Apanasovich %A V. V. Grinev %T Simulation modelling of single nucleotide genetic polymorphisms %J Journal of the Belarusian State University. Mathematics and Informatics %D 2024 %P 104-112 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a8/ %G ru %F BGUMI_2024_2_a8
N. N. Yatskou; V. V. Apanasovich; V. V. Grinev. Simulation modelling of single nucleotide genetic polymorphisms. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2024), pp. 104-112. http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a8/
[1] W. K. Sung, Algorithms for next-generation sequencing. 1st edition, Chapman and Hall/CRC, New York, 2017, +364 pp. | DOI
[2] M. Kappelmann-Fenzl, Next generation sequencing and data analysis. 1st edition, Springer, Cham, 2021, +218 pp. | DOI
[3] X. L. Wu, J. Xu, G. Feng, G. R. Wiggans, J. F. Taylor, J. He, “Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications”, PLoS ONE, 11(9) (2016), e0161719 | DOI
[4] W. Korani, J. P. Clevenger, Y. Chu, P. Ozias-Akins, “Machine learning as an effective method for identifying true single nucleotide polymorphisms in polyploid plants”, Plant Genome, 12(1) (2019), 180023 | DOI
[5] A. Masoudi-Nejad, Z. Narimani, N. Hosseinkhan, Next generation sequencing and sequence assembly. Methodologies and algorithms. 1st edition, Springer, New York, 2013, +86 pp. | DOI
[6] Z. Su, J. Marchini, P. Donnelly, “HAPGEN2: simulations of multiple disease SNPs”, Bioinformatics, 27(16) (2011), 2304–2305 | DOI
[7] J. H. Oh, J. O. Deasy, “SITDEM: a simulation tool for disease/endpoint models of association studies based on single nucleotide polymorphism genotypes”, Computers in Biology and Medicine, 45 (2014), 136–142 | DOI
[8] H. V. Meyer, E. Birney, “PhenotypeSimulator: a comprehensive framework for simulating multi-trait, multi-locus genotype to phenotype relationships”, Bioinformatics, 34(17) (2018), 2951–2956 | DOI
[9] A. E. Hendricks, J. Dupuis, M. Gupta, M. W. Logue, K. L. Lunetta, “A comparison of gene region simulation methods”, PLoS ONE, 7(7) (2012), e40925 | DOI
[10] B. Peng, H. S. Chen, L. E. Mechanic, B. Racine, J. Clarke, L. Clarke, “Genetic Simulation Resources: a website for the registration and discovery of genetic data simulators”, Bioinformatics, 29(8) (2013), 1101–1102 | DOI
[11] B. Peng, H. S. Chen, L. E. Mechanic, B. Racine, J. Clarke, E. Gillanders, “Genetic data simulators and their applications: an overview”, Genetic Epidemiology, 39(1) (2015), 2–10 | DOI
[12] M. M. Yatskou, V. V. Apanasovich, “Simulation modelling and machine learning platform for processing fluorescence spectroscopy data”, Pattern Recognition and Information Processing. PRIP-2021, Springer, Cham, 2022, 178–190 | DOI
[13] L. Jacquin, T. V. Cao, C. Grenier, N. Ahmadi, “DHOEM: a statistical simulation software for simulating new markers in real SNP marker data”, BMC Bioinformatics, 16 (2015), 404 | DOI
[14] A. U. Volkau, M. M. Yatskou, V. V. Grinev, “Selecting informative features of human gene exons”, Journal of the Belarusian State University. Mathematics and Informatics, 1 (2019), 77–89 | DOI
[15] Silun. Xu, V. V. Skakun, “Comparative analysis of deep learning neural networks for the segmentation of cancer cell nuclei on immunohistochemical fluorescent images”, Journal of the Belarusian State University. Mathematics and Informatics, 1 (2024), 59–70
[16] V. V. Grinev, M. M. Yatskou, V. V. Skakun, M. V. Chepeleva, P. V. Nazarov, “ORFhunteR: an accurate approach to the automatic identification and annotation of open reading frames in human mRNA molecules”, Software Impacts, 12 (2022), 100268 | DOI
[17] T. Hothorn, K. Hornik, A. Zeileis, “Unbiased recursive partitioning: a conditional inference framework”, Journal of Computational and Graphical Statistics, 15(3) (2006), 651–674 | DOI
[18] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and regression trees. 1st edition, Wadsworth International Group, Wadsworth, 1984, +358 pp.
[19] V. N. Vapnik, The nature of statistical leaning theory. 2nd edition, Springer, New York, 2000, 314 pp. | DOI
[20] K. P. Murphy, Probabilistic machine learning [Internet], The MIT Press, London, 2022, +864 pp.
[21] R-Core-Team, R: a language and environment for statistical computing. R foundation for statistical computing [Internet], Vienna, 2021 | DOI
[22] J. M. Zook, J. McDaniel, N. D. Olson, J. Wagner, H. Parikh, H. Heaton, “An open resource for accurately benchmarking small variant and reference calls”, Nature Biotechnology, 37(5) (2019), 561–566 | DOI
[23] Y. Liao, G. K. Smyth, W. Shi, “The R-package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads”, Nucleic Acids Research, 47(8) (2019), e47 | DOI
[24] M. M. Yatskou, E. V. Smolyakova, V. V. Skakun, V. V. Grinev, “Entropy-based detection of single-nucleotide genetic polymorphism sites”, AN Sevchenko Institute of Applied Physical Problems of Belarusian State University. Proceedings of the 7th International scientific-practical conference «Applied problems of optics, informatics, radiophysics and condensed matter physics» (Minsk, Belarus), Belarusian State University, Minsk, 2023, 191–193