Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2024_2_a7, author = {U. A. Varabei and A. \`E. Malevich}, title = {Convolutional wavelet blocks in image classification}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {93--103}, publisher = {mathdoc}, volume = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a7/} }
TY - JOUR AU - U. A. Varabei AU - A. È. Malevich TI - Convolutional wavelet blocks in image classification JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2024 SP - 93 EP - 103 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a7/ LA - ru ID - BGUMI_2024_2_a7 ER -
U. A. Varabei; A. È. Malevich. Convolutional wavelet blocks in image classification. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2024), pp. 93-103. http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a7/
[1] K. Simonyan, A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, arXiv, 2015, 14 | DOI
[2] K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition”, arXiv, 2015, 12 | DOI
[3] M. Tan, Q. V. Le, “EfficientNet: rethinking model scaling for convolutional neural networks”, arXiv, 2020, 11 | DOI
[4] H. Cheng, M. Zhang, J. Q. Shi, “A survey on deep neural network pruning-taxonomy, comparison, analysis, and recommendations”, arXiv, 2023, 23 | DOI
[5] C. Blake, D. Orr, C. Luschi, “Unit scaling: out-of-the-box low-precision training”, arXiv, 2023, 29 | DOI
[6] Shuai. Zhang, M. a. Guangdi, Weichen. Yang, Zuo. Fang, S. V. Ablameyko, “Car parking detection in images by using a semi-supervised modified YOLOv5 model”, Journal of the Belarusian State University. Mathematics and Informatics, 3 (2023), 72–81
[7] A. Singh, N. Kingsbury, “Efficient convolutional network learning using parametric log based dual-tree wavelet ScatterNet”, arXiv, 2017, 8 | DOI
[8] Q. Li, L. Shen, S. Guo, Z. Lai, “Wavelet integrated CNNs for noise-robust image classification”, arXiv, 2020, 17 | DOI
[9] M. Wolter, F. Blanke, R. Heese, J. Garcke, “Wavelet-packets for deepfake image analysis and detection”, arXiv, 2022, 29 | DOI
[10] K. He, X. Zhang, S. Ren, J. Sun, “Identity mappings in deep residual networks”, arXiv, 2016, 15 | DOI
[11] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L-C. Chen, “MobileNetV2: interested residuals and linear bottlenecks”, arXiv, 2019, 14 | DOI
[12] M. Tan, Q. V. Le, “EfficientNetV2: smaller models and faster training”, arXiv, 2021, 11 | DOI
[13] U. Lepik, H. Hein, Haar wavelets: with applications, Mathematical engineering, Springer, Cham, 2014, X+207 pp. | DOI
[14] I. Daubechies, Ten lectures on wavelets, CBMSNSF regional conference series in applied mathematics, volume 61, Society for Industrial and Applied Mathematics, Philadelphia, 1992, XIX+357 pp.
[15] A. Cohen, I. Daubechies, J. C. Feauveau, “Biorthogonal bases of compactly supported wavelets”, Communications on Pure and Applied Mathematics, 45(5) (1992), 485–560 | DOI
[16] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, J. Xiao, “LSUN: construction of a large-scale image dataset using deep learning with humans in the loop”, arXiv, 2016, 9 | DOI