Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2024_2_a3, author = {O. S. Dudina}, title = {Analytical modelling of systems with a ticket queue}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {40--53}, publisher = {mathdoc}, volume = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a3/} }
O. S. Dudina. Analytical modelling of systems with a ticket queue. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2024), pp. 40-53. http://geodesic.mathdoc.fr/item/BGUMI_2024_2_a3/
[1] B. Sun, A. Dudin, S. Dudin, “Queueing system with impatient customers, visible queue and replenishable inventory”, Applied and Computational Mathematics, 17(2) (2018), 161–174
[2] A. Dudin, O. Dudina, S. Dudin, Y. Gaidamaka, “Self-service system with rating dependent arrivals”, Mathematics, 10(3) (2022), 297 | DOI
[3] O. Garnett, A. Mandelbaum, M. Reiman, “Designing a call center with impatient customers”, Manufacturing and Service Operations Management, 4(3) (2002), 208–227 | DOI
[4] K. Wang, N. Li, Z. Jiang, “Queueing system with impatient customers: a review”, Proceedings of 2010 IEEE International conference on service operations and logistics, and informatics (QingDao, China), IEEE, 2010, 82–87 | DOI
[5] S. H. Xu, L. Gao, J. Ou, “Service performance analysis and improvement for a ticket queue with balking customers”, Management Science, 53(6) (2007), 971–990 | DOI
[6] G. Hanukov, M. Hassoun, O. Musicant, “On the benefits of providing timely information in ticket queues with balking and calling times”, Mathematics, 9(21) (2021), 2753 | DOI
[7] O. B. Jennings, J. Pender, “Comparisons of ticket and standard queues”, Queueing Systems, 84(1–2) (2016), 145–202 | DOI
[8] L. Xiao, S. H. Xu, D. D. Yao, H. Zhang, “Optimal staffing for ticket queues”, Queueing Systems, 102(1–2) (2022), 309–351 | DOI
[9] C. Kim, A. Dudin, S. Dudin, O. Dudina, “Analysis of MAP/M/1/K ticket queue with users balking and reneging and service of no-show users”, Proceedings of the 37th ECMS International conference on modelling and simulation, ECMS 2023 (Florence, Italy), Digitaldruck Pirrot, Saarbrucken, 2023, 26–32 (Communications of the ECMS; volume 37)
[10] S. R. Chakravarthy, Introduction to matrix-analytic methods in queues. Volume 1, Analytical and simulation approach – basics, Mathematics and statistics series, 1, ISTE, London, 2022, XV+341 pp. | DOI
[11] S. R. Chakravarthy, Introduction to matrix-analytic methods in queues. Volume 2, Analytical and simulation approach – queues and simulation, Mathematics and statistics series, 2, ISTE, London, 2022, XV+415 pp. | DOI
[12] A. N. Dudin, V. I. Klimenok, V. M. Vishnevsky, The theory of queuing systems with correlated flows, Springer, Cham, 2020, XXII+410 pp. | DOI
[13] D. M. Lucantoni, “New results on the single server queue with a batch Markovian arrival process”, Communications in Statistics. Stochastic Models, 7(1) (1991), 1–46 | DOI
[14] C. Kim, A. Dudin, O. Dudina, S. Dudin, “Tandem queueing system with infinite and finite intermediate buffers and generalized phasetype service time distribution”, European Journal of Operational Research, 235(1) (2014), 170–179 | DOI
[15] C. Kim, A. Dudin, S. Dudin, O. Dudina, “Mathematical model of operation of a cell of a mobile communication network with adaptive modulation schemes and handover of mobile users”, IEEE Access, 9 (2021), 106933–106946 | DOI