Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2024_1_a4, author = {X. Silun and V. V. Skakun}, title = {Comparative analysis of deep learning neural networks for the segmentation of cancer cell nuclei on immunohistochemical fluorescent images}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {59--70}, publisher = {mathdoc}, volume = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a4/} }
TY - JOUR AU - X. Silun AU - V. V. Skakun TI - Comparative analysis of deep learning neural networks for the segmentation of cancer cell nuclei on immunohistochemical fluorescent images JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2024 SP - 59 EP - 70 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a4/ LA - ru ID - BGUMI_2024_1_a4 ER -
%0 Journal Article %A X. Silun %A V. V. Skakun %T Comparative analysis of deep learning neural networks for the segmentation of cancer cell nuclei on immunohistochemical fluorescent images %J Journal of the Belarusian State University. Mathematics and Informatics %D 2024 %P 59-70 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a4/ %G ru %F BGUMI_2024_1_a4
X. Silun; V. V. Skakun. Comparative analysis of deep learning neural networks for the segmentation of cancer cell nuclei on immunohistochemical fluorescent images. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2024), pp. 59-70. http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a4/
[1] G. G. Chung, M. P. Zerkowski, S. Ghosh, R. L. Camp, D. L. Rimm, “Quantitative analysis of estrogen receptor heterogeneity in breast cancer”, Laboratory Investigation, 87(7) (2007), 662–669 | DOI
[2] R. L. Camp, G. G. Chung, D. L. Rimm, “Automated subcellular localization and quantification of protein expression in tissue microarrays”, Nature Medicine, 8(11) (2002), 1323–1328 | DOI
[3] N. S. Todewale, “Lesion segmentation from mammogram images using a U-Net deep learning network”, International Journal of Engineering Research and Technology, 9(2) (2020), 406–411
[4] A. Lagree, M. Mohebpour, N. Meti, K. Saednia, F. I. Lu, E. Slodkowska, “A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks”, Scientific Reports, 11 (2021), 8025 | DOI
[5] Y. V. Lisitsa, M. M. Yatskou, V. V. Apanasovich, T. V. Apanasovich, “Algorithm for automatic segmentation of nuclear boundaries in cancer cells in three-channel luminescent images”, Journal of Applied Spectroscopy, 82(4) (2015), 634–643 | DOI
[6] A. Saood, I. Hatem, “COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet”, BMC Medical Imaging, 21 (2021), 19 | DOI
[7] K. Simonyan, A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, arXiv, 2014, 10 | DOI
[8] Kaiming. He, Xiangyu. Zhang, Shaoqing. Ren, Jian. Sun, “Deep residual learning for image recognition”, 2016 IEEE conference on computer vision and pattern recognition (Las Vegas, USA), IEEE, 2016, 770–778 | DOI
[9] J. Long, E. Shelhamer, T. Darrell, “Fully convolutional networks for semantic segmentation”, arXiv, 2014, 10 | DOI
[10] O. Ronneberger, P. Fischer, T. Brox, “U-Net: convolutional networks for biomedical image segmentation”, Medical image computing and computer-assisted intervention (MICCAI-2015). Proceedings of the 18th International conference. Part 3 (Munich, Germany), Springer, Cham, 2015, 234–241 (Lecture notes in computer science; volume 9351) | DOI
[11] V. Badrinarayanan, A. Kendall, R. Cipolla, “SegNet: a deep convolutional encoder-decoder architecture for image segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12) (2017), 2481–2495 | DOI
[12] S. Jegou, M. Drozdzal, D. Vazquez, A. Romero, Y. Bengio, “The one hundred layers tiramisu: fully convolutional DenseNets for semantic segmentation”, 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW) (Honolulu, USA), IEEE, 2017, 1175–1183 | DOI
[13] Zongwei. Zhou, MMR. Siddiquee, N. Tajbakhsh, Jianming. Liang, “UNet++: a nested U-Net architecture for medical image segmentation”, Deep learning in medical image analysis and multimodal learning for clinical decision support. Proceedings of the 4th International workshop DLMIA-2018 and 8th International workshop ML-CDS-2018 held in conjunction with MICCAI-2018 (Granada, Spain), Springer, Cham, 2018, 3–11 (Lecture notes in computer science; volume 11045) | DOI
[14] N. Ibtehaz, M. S. Rahman, “MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation”, Neural Networks, 121 (2020), 74–87 | DOI
[15] N. Saxena, Babu. Kishore, B. Raman, “Semantic segmentation of multispectral images using Res-Seg-net model”, 2020 IEEE 14th International conference on semantic computing (ICSC) (San Diego, USA), IEEE, 2020, 154–157 | DOI
[16] Huimin. Huang, Lanfen. Lin, Ruofeng. Tong, Hongjie. Hu, Qiaowei. Zhang, Y. Iwamoto, “UNet 3+: a full-scale connected U-Net for medical image segmentation”, 2020 IEEE International conference on acoustics, speech and signal processing (ICASSP) (Barcelona, Spain), IEEE, 2020, 1055–1059 | DOI
[17] Jieneng. Chen, Yongyi. Lu, Qihang. Yu, Xiangde. Luo, E. Adeli, Yan. Wang, “TransUNet: transformers make strong encoders for medical image segmentation”, arXiv, 2021, 13 | DOI
[18] Silun. Xu, V. Skakun, “Comparison of deep learning preprocessing algorithms of nuclei segmentation on fluorescence immunohistology images of cancer cells”, Pattern recognition and information processing. Revised selected papers of the 15th International conference PRIP-2021 (Minsk, Belarus), Springer, Cham, 2022, 166–177 (Communications in computer and information science; volume 1562) | DOI
[19] Gao. Huang, Zhuang. Liu, Der. Van, K. Q. Weinberger, “Densely connected convolutional networks”, 2017 IEEE conference on computer vision and pattern recognition (CVPR) (Honolulu, USA), IEEE, 2017, 2261–2269 | DOI
[20] Bin. Pan, Zhenwei. Shi, Xia. Xu, Tianyang. Shi, Ning. Zhang, Xinzhong. Zhu, “CoinNet: copy initialization network for multispectral imagery semantic segmentation”, IEEE Geoscience and Remote Sensing Letters, 16(5) (2019), 816–820 | DOI