A numerical study of the propagation of a shock wave from a homogeneous gas into a gas suspension with a periodic distribution of the dispersed phase
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2024), pp. 16-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present a numerical model of shock wave propagation in a gas suspension. The mathematical model realised a continuum technique for modelling the dynamics of inhomogeneous media, namely, for each component of the suspension, a complete hydrodynamic system of motion equations was solved. The carrier medium was described as a viscous, compressible heat-conducting gas. The mathematical model took into account the exchanges of momentum heat between the components of the mixture. The equations of the mathematical model were solved by the explicit McCormack finite-difference method. To obtain a monotonic solution, a non-linear correction scheme was used. The process of interaction of a shock wave passed from a homogeneous gas into a gas suspension was considered. The dispersed phase in the low-pressure chamber had a periodic spatial distribution of the concentration. The influence of the periodicity of the particle concentration distribution on the pressure drop during the passage of a shock wave through a gas suspension was determined. The influence of the intensity of the shock wave on the value of the gas pressure drop when passing through sections of a gas suspension with a cyclically distributed concentration of the dispersed phase was considered.
Keywords: Monodisperse gas suspension; interpenetrating continua; explicit McCormack scheme; shock waves
@article{BGUMI_2024_1_a1,
     author = {D. A. Tukmakov},
     title = {A numerical study of the propagation of a shock wave from a homogeneous gas into a gas suspension with a periodic distribution of the dispersed phase},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {16--28},
     publisher = {mathdoc},
     volume = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a1/}
}
TY  - JOUR
AU  - D. A. Tukmakov
TI  - A numerical study of the propagation of a shock wave from a homogeneous gas into a gas suspension with a periodic distribution of the dispersed phase
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2024
SP  - 16
EP  - 28
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a1/
LA  - ru
ID  - BGUMI_2024_1_a1
ER  - 
%0 Journal Article
%A D. A. Tukmakov
%T A numerical study of the propagation of a shock wave from a homogeneous gas into a gas suspension with a periodic distribution of the dispersed phase
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2024
%P 16-28
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a1/
%G ru
%F BGUMI_2024_1_a1
D. A. Tukmakov. A numerical study of the propagation of a shock wave from a homogeneous gas into a gas suspension with a periodic distribution of the dispersed phase. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2024), pp. 16-28. http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a1/

[1] L. G. Loitsyanskii, Mekhanika zhidkosti i gaza. 7-e izdanie, Drofa, Moskva, 2003, 840 pp.

[2] R. I. Nigmatulin, Osnovy mekhaniki geterogennykh sred, Nauka, Moskva, 1978, 336 pp.

[3] M. E. Deich, G. A. Filippov, Gazodinamika dvukhfaznykh sred. 2-e izdanie, Energoizdat, Moskva, 1981, 472 pp.

[4] S. P. Kiselev, G. A. Ruev, A. P. Trunev, V. M. Fomin, M. Sh. Shavaliev, Udarno-volnovye protsessy v dvukhkomponentnykh i dvukhfaznykh sredakh, Nauka, Novosibirsk, 1992, 261 pp.

[5] A. G. Kutushev, Matematicheskoe modelirovanie volnovykh protsessov v aerodispersnykh i poroshkoobraznykh sredakh, Nedra, Sankt-Peterburg, 2003, 284 pp.

[6] A. V. Fedorov, V. M. Fomin, T. A. Khmel, Volnovye protsessy v gazovzvesyakh chastits metallov, Parallel, Novosibirsk, 2015, 301 pp.

[7] V. Deledicque, M. V. Papalexandris, “An exact Riemann solver for compressible two-phase flow models containing non-conservative products”, Journal of Computational Physics, 222(1) (2007), 217–245 | DOI

[8] A. N. Osiptsov, O. D. Rybdylova, “Effekt fokusirovki aerozolnykh chastits za udarnoi volnoi, dvizhuscheisya v mikrokanale”, Doklady Akademii nauk, 433(3) (2010), 346–349

[9] P. A. Fomin, D. R. Chen, “Vliyanie khimicheski inertnykh chastits na parametry i podavlenie detonatsii v gazakh”, Fizika goreniya i vzryva, 45(3) (2009), 77–88

[10] D. A. Tropin, S. A. Lavruk, “Fiziko-matematicheskoe modelirovanie oslableniya gomogennykh i geterogennykh detonatsionnykh voln oblakami kapel vody”, Fizika goreniya i vzryva, 58(3) (2022), 80–90 | DOI

[11] U. A. Nazarov, “Preryvanie rasprostraneniya detonatsionnykh voln v gazovzvesyakh unitarnogo topliva sloem neodnorodnykh inertnykh chastits”, Fizika goreniya i vzryva, 57(6) (2021), 65–76 | DOI

[12] A. A. Zhilin, A. V. Fedorov, “Primenenie skhemy TVD dlya rascheta dvukhfaznykh techenii s razlichnymi skorostyami i davleniyami komponentov”, Matematicheskoe modelirovanie, 20(1) (2008), 29–47

[13] K. N. Volkov, V. N. Emelyanov, A. G. Karpenko, I. V. Teterina, “Modelirovanie nestatsionarnogo techeniya gazovzvesi, voznikayuschego pri vzaimodeistvii udarnoi volny so sloem chastits”, Vychislitelnye metody i programmirovanie, 21(1) (2020), 96–114 | DOI

[14] D. V. Sadin, “Prilozhenie gibridnogo metoda krupnykh chastits k raschetu vzaimodeistviya udarnoi volny so sloem gazovzvesi”, Kompyuternye issledovaniya i modelirovanie, 12(6) (2020), 1323–1338 | DOI

[15] E. E. Mazepa, P. I. Kusainov, O. Yu. Lukashov, A. Yu. Krainov, “O chislennom reshenii zadachi rasprostraneniya vozdushnykh udarnykh voln v gornykh vyrabotkakh shakhty”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 64 (2020), 108–120 | DOI

[16] P. S. Utkin, “Matematicheskoe modelirovanie vzaimodeistviya udarnoi volny s plotnoi zasypkoi chastits v ramkakh dvukhzhidkostnogo podkhoda”, Khimicheskaya fizika, 36(11) (2017), 61–71 | DOI

[17] Ya. E. Poroshina, A. I. Lopato, P. S. Utkin, “Kharakteristicheskii analiz dinamiki rasprostraneniya udarnoi volny v srede s neravnomernym raspredeleniem plotnosti”, Khimicheskaya fizika, 41(8) (2022), 48–58 | DOI

[18] T. Khmel, S. Lavruk, “Detonation flows in aluminium particle gas suspensions, inhomogeneous in concentrations”, Journal of Loss Prevention in the Process Industries, 72 (2021), 104522 | DOI

[19] Z. Huang, H. Zhang, “On the interactions between a propagating shock wave and evaporating water droplets”, Physics of Fluids, 32(12) (2020), 123315 | DOI

[20] A. L. Tukmakov, “Chislennoe modelirovanie kolebanii monodispersnoi gazovzvesi v nelineinom volnovom pole”, Prikladnaya mekhanika i tekhnicheskaya fizika, 52(2) (2011), 36–43

[21] D. A. Gubaidullin, D. A. Tukmakov, “Chislennoe izuchenie dinamiki udarnykh voln v gazovzvesyakh”, Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2 (2013), 38–42

[22] D. A. Gubaidullin, D. A. Tukmakov, “Vliyanie svoistv dispersnoi fazy na kharakteristiki udarnoi volny pri prokhozhdenii pryamogo skachka uplotneniya iz chistogo gaza v gazovzves”, Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 3 (2017), 128–132

[23] D. A. Gubaidullin, D. A. Tukmakov, “Chislennoe issledovanie evolyutsii udarnoi volny v gazovzvesi s uchetom neravnomernogo raspredeleniya chastits”, Matematicheskoe modelirovanie, 26(10) (2014), 109–119

[24] R. I. Nigmatulin, D. A. Gubaidullin, D. A. Tukmakov, “Udarno-volnovoi razlet gazovzvesei”, Doklady Akademii nauk, 466(4) (2016), 418–421 | DOI

[25] D. A. Tukmakov, “Comparison of the physical experiment of the gas oscillations in the acoustic resonator with numerical calculations”, Journal of Physics. Conference Series, 1328 (2019), 012087 | DOI

[26] K. Fletcher, Vychislitelnye metody v dinamike zhidkostei. Tom 2, Metody rascheta razlichnykh techenii, Mir, Moskva, 1991, 552 pp.

[27] V. M. Kovenya, G. A. Tarnavskii, S. G. Chernyi, Primenenie metoda rasschepleniya v zadachakh aerodinamiki, Nauka, Novosibirsk, 1990, 246 pp.

[28] I. F. Muzafarov, S. V. Utyuzhnikov, “Primenenie kompaktnykh raznostnykh skhem k issledovaniyu nestatsionarnykh techenii szhimaemogo gaza”, Matematicheskoe modelirovanie, 5(3) (993), 74–83