Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2024_1_a0, author = {T. R. Nagornaya and K. M. Rasulov}, title = {On the solution of the {Poincare} boundary value problem for generalised harmonic functions in simply connected domains}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {6--15}, publisher = {mathdoc}, volume = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a0/} }
TY - JOUR AU - T. R. Nagornaya AU - K. M. Rasulov TI - On the solution of the Poincare boundary value problem for generalised harmonic functions in simply connected domains JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2024 SP - 6 EP - 15 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a0/ LA - ru ID - BGUMI_2024_1_a0 ER -
%0 Journal Article %A T. R. Nagornaya %A K. M. Rasulov %T On the solution of the Poincare boundary value problem for generalised harmonic functions in simply connected domains %J Journal of the Belarusian State University. Mathematics and Informatics %D 2024 %P 6-15 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a0/ %G ru %F BGUMI_2024_1_a0
T. R. Nagornaya; K. M. Rasulov. On the solution of the Poincare boundary value problem for generalised harmonic functions in simply connected domains. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2024), pp. 6-15. http://geodesic.mathdoc.fr/item/BGUMI_2024_1_a0/
[1] T. R. Nagornaya, K. M. Rasulov, “Algoritm yavnogo resheniya zadachi Puankare dlya obobschennykh garmonicheskikh funktsii vtorogo poryadka v krugovykh oblastyakh”, Nauchno-tekhnicheskii vestnik Povolzhya, 11 (2022), 24–27
[2] K. W. Bauer, Uber eine der Differentialgleichung zugeordnete Funktionentheorie, Bonner mathematische Schriften, 23, 1965, 98 pp.
[3] K. W. Bauer, S. Ruscheweyh, Differential operators for partial differential equations and function theoretic applications, Lecture notes in mathematics, 791, Springer-Verlag, Berlin, 1980, 5+258 pp. | DOI
[4] T. R. Nagornaya, K. M. Rasulov, “O kraevoi zadache Puankare dlya obobschennykh garmonicheskikh funktsii v krugovykh oblastyakh”, Nauchno-tekhnicheskii vestnik Povolzhya, 7 (2022), 32–35
[5] K. M. Rasulov, T. R. Nagornaya, “O reshenii v yavnom vide kraevoi zadachi Neimana dlya differentsialnogo uravneniya Bauera v krugovykh oblastyakh”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya. Matematika. Mekhanika. Informatika, 21(3) (2021), 326–335 | DOI
[6] A. V. Bitsadze, Uravneniya matematicheskoi fiziki, Nauka, Moskva, 1976, 295 pp.
[7] F. D. Gakhov, “Kraevye zadachi”, 3-e izdanie, Nauka (Moskva), 1977
[8] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya: granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike. 3-e izdanie, Nauka, Moskva, 1968, 511 pp.