On $C^{*}$-algebras generated by idempotents
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 98-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

Banach algebras generated by two idempotents appear in many places. In 1968–1969 P. R. Halmos and G. K. Pedersen studied $C^{*}$-algebras generated by two self-adjoint projections. The Banach algebras generated by two idempotents were described by S. Roch and B. Silbermann in 1988. Such algebras can have irreducible representations of first or second order. The theory of Banach algebras generated by three idempotents has not yet been constructed. Such algebras can have irreducible representations of any order. In 1974 F. Krauss and T. Lawson described the $n$-homogeneous $C^{*}$-algebras over spheres $S^{2}, S^{3}, S^{4}$. By using these results we prove that $n$-homogeneous ($n>2$) $C^{*}$-algebra such that $PrimA\cong S^{4}$ can be generated by finite number of idempotents.
Keywords: $C^{*}$-algebra; idempotent; finitely generated algebra; number of generators; primitive ideals; base space; algebraic bundle; operator algebra; irreducible representation.
@article{BGUMI_2023_3_a9,
     author = {M. V. Shchukin},
     title = {On $C^{*}$-algebras generated by idempotents},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {98--103},
     publisher = {mathdoc},
     volume = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a9/}
}
TY  - JOUR
AU  - M. V. Shchukin
TI  - On $C^{*}$-algebras generated by idempotents
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 98
EP  - 103
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a9/
LA  - ru
ID  - BGUMI_2023_3_a9
ER  - 
%0 Journal Article
%A M. V. Shchukin
%T On $C^{*}$-algebras generated by idempotents
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 98-103
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a9/
%G ru
%F BGUMI_2023_3_a9
M. V. Shchukin. On $C^{*}$-algebras generated by idempotents. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 98-103. http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a9/

[1] P. R. Halmos, “Two subspaces”, Transactions of the American Mathematical Society, 144 (1969), 381–389 | DOI | MR | Zbl

[2] G. K. Pedersen, “Measure theory for C-algebras II”, Mathematica Scandinavica, 22 (1968), 63–74 | DOI | MR | Zbl

[3] S. Roch, B. Silbermann, “Algebras generated by idempotents and the symbol calculus for singular integral operators”, Integral Equations and Operator Theory, 11(3) (1988), 385–419 | DOI | MR | Zbl

[4] C. Davis, “Generators of the ring of bounded operators”, Proceedings of the American Mathematical Society, 6(6) (1955), 970–972 | DOI | MR | Zbl

[5] N. Krupnik, “Minimal number of idempotent generators of matrix algebras over arbitrary field”, Communications in Algebra, 20(11) (1992), 3251–3257 | DOI | MR | Zbl

[6] JMG. Fell, “The structure of algebras of operator fields”, Acta Mathematica, 106(3–4) (1961), 233–280 | DOI | MR

[7] J. Tomiyama, M. Takesaki, “Applications of fibre bundles to the certain class of C-algebras”, Tohoku Mathematical Journal, 13(3) (1961), 498–522 | DOI | MR | Zbl

[8] M. Shchukin, “Non-trivial C-algebras generated by idempotents”, ICNODEA-2001. Proceedings of the International conference on nonlinear operators, differential equations and applications, Babes-Bolyai University, Cluj-Napoca, 2002, 353–359 | MR

[9] M. V. Shchukin, “On n-homogeneous C-algebras over a two-dimensional compact oriented connected manifold”, Taurida Journal of Computer Science Theory and Mathematics, 2 (2018), 90–97 | MR

[10] M. V. Shchukin, “N-homogeneous C-algebras generated by idempotents”, Russian Mathematics, 55(7) (2011), 81–88 | DOI | MR | Zbl

[11] A. Bottcher, I. Gohberg, Y. u. Karlovich, N. Krupnik, S. Roch, B. Silbermann, “Banach algebras generated by N idempotents and applications”, Singular integral operators and related topics. Joint German – Israeli workshop, Birkhauser Verlag, Basel, 1996, 19–54 | DOI | MR | Zbl

[12] F. Krauss, T. C. Lawson, “Examples of homogeneous C-algebras”, Memoirs of the American Mathematical Society, 148 (1974), 153–164 | MR | Zbl

[13] C. Pearcy, D. M. Topping, “Sums of small numbers of idempotents”, Michigan Mathematical Journal, 14(4) (1967), 453–465 | DOI | MR | Zbl

[14] V. I. Rabanovich, Y. S. Samoilenko, “When a sum of idempotents or projections is a multiple of the identity”, Functional Analysis and its Applications, 34(4) (2000), 311–313 | DOI | MR | Zbl

[15] N. L. Vasilevskii, I. M. Spitkovskii, “Ob algebre, porozhdennoi dvumya proektorami”, Doklady Akademii nauk Ukrainskoi SSR. Seriya A, Fiziko-matematicheskie i tekhnicheskie nauki, 8 (1981), 10–13 | Zbl

[16] N. Krupnik, S. Roch, B. Silbermann, “On C-algebras generated by idempotents”, Journal of Functional Analysis, 137(2) (1996), 303–319 | DOI | MR | Zbl