Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2023_3_a8, author = {M. M. Vas'kovskii and A. O. Zadorozhnuyk and A. D. Dosova}, title = {Estimates of critical probabilities of percolation on finite square grids}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {92--97}, publisher = {mathdoc}, volume = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a8/} }
TY - JOUR AU - M. M. Vas'kovskii AU - A. O. Zadorozhnuyk AU - A. D. Dosova TI - Estimates of critical probabilities of percolation on finite square grids JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2023 SP - 92 EP - 97 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a8/ LA - ru ID - BGUMI_2023_3_a8 ER -
%0 Journal Article %A M. M. Vas'kovskii %A A. O. Zadorozhnuyk %A A. D. Dosova %T Estimates of critical probabilities of percolation on finite square grids %J Journal of the Belarusian State University. Mathematics and Informatics %D 2023 %P 92-97 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a8/ %G ru %F BGUMI_2023_3_a8
M. M. Vas'kovskii; A. O. Zadorozhnuyk; A. D. Dosova. Estimates of critical probabilities of percolation on finite square grids. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 92-97. http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a8/
[1] S. R. Broadbent, J. M. Hammersley, “Percolation processes. Crystals and mazes”, Mathematical Proceedings of the Cambridge Philosophical Society, 53(3) (1957), 629–641 | DOI | MR | Zbl
[2] M. F. Sykes, J. W. Essam, “Exact critical percolation probabilities for site and bond problems in two dimensions”, Journal of Mathematical Physics, 5(8) (1964), 1117–1127 | DOI | MR
[3] T. E. Harris, “A lower bound for the critical probability in a certain percolation process”, Mathematical Proceedings of the Cambridge Philosophical Society, 56(1) (1960), 13–20 | DOI | MR | Zbl
[4] H. Kesten, “The critical probability of bond percolation on the square lattice equals 1/2”, Communications in Mathematical Physics, 74(1) (1980), 41–59 | DOI | MR | Zbl
[5] C. Malon, I. Pak, “Percolation on finite Cayley graphs”, Combinatorics, Probability and Computing, 15(4) (2006), 571–588 | DOI | MR | Zbl
[6] G. Grimmet, Percolation. 2nd edition, Springer-Verlag, Berlin, 1999, XIII+447 pp. | DOI | MR
[7] C. Borgs, J. T. Chayes, H. Kesten, J. Spencer, “The birth of the infinite cluster: finite-size scaling in percolation”, Communications in Mathematical Physics, 224(1) (2001), 153–204 | DOI | MR | Zbl
[8] T. V. Rusilko, “G-set kak stokhasticheskaya model seti peredachi dannykh”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2023), 45–54 | MR
[9] A. O. Zadorozhnyuk, “Monotonnost veroyatnostei sostoyanii sluchainogo bluzhdaniya na konechnykh reshetkakh”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2022), 38–45 | DOI | MR