Estimates of critical probabilities of percolation on finite square grids
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 92-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the problem of determining the critical probabilities of percolation for finite square grids. Basing on the Harris – Kesten theorem on critical probability $p_{c} (\mathbb{Z}^{2})$ in the infinite square grid, we prove that the exact threshold of exponential decay in the infinite square grid is equal to $\frac{1}{2}$. With the help of the evaluated value of $p_{g} (\mathbb{Z}^{2})$ we show that the critical probabilities of percolation on finite square grids are arbitrarily close to $\frac{1}{2}$ when the size of a grid is large enough.
Keywords: Percolation; critical probability; grid.
@article{BGUMI_2023_3_a8,
     author = {M. M. Vas'kovskii and A. O. Zadorozhnuyk and A. D. Dosova},
     title = {Estimates of critical probabilities of percolation on finite square grids},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {92--97},
     publisher = {mathdoc},
     volume = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a8/}
}
TY  - JOUR
AU  - M. M. Vas'kovskii
AU  - A. O. Zadorozhnuyk
AU  - A. D. Dosova
TI  - Estimates of critical probabilities of percolation on finite square grids
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 92
EP  - 97
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a8/
LA  - ru
ID  - BGUMI_2023_3_a8
ER  - 
%0 Journal Article
%A M. M. Vas'kovskii
%A A. O. Zadorozhnuyk
%A A. D. Dosova
%T Estimates of critical probabilities of percolation on finite square grids
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 92-97
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a8/
%G ru
%F BGUMI_2023_3_a8
M. M. Vas'kovskii; A. O. Zadorozhnuyk; A. D. Dosova. Estimates of critical probabilities of percolation on finite square grids. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 92-97. http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a8/

[1] S. R. Broadbent, J. M. Hammersley, “Percolation processes. Crystals and mazes”, Mathematical Proceedings of the Cambridge Philosophical Society, 53(3) (1957), 629–641 | DOI | MR | Zbl

[2] M. F. Sykes, J. W. Essam, “Exact critical percolation probabilities for site and bond problems in two dimensions”, Journal of Mathematical Physics, 5(8) (1964), 1117–1127 | DOI | MR

[3] T. E. Harris, “A lower bound for the critical probability in a certain percolation process”, Mathematical Proceedings of the Cambridge Philosophical Society, 56(1) (1960), 13–20 | DOI | MR | Zbl

[4] H. Kesten, “The critical probability of bond percolation on the square lattice equals 1/2”, Communications in Mathematical Physics, 74(1) (1980), 41–59 | DOI | MR | Zbl

[5] C. Malon, I. Pak, “Percolation on finite Cayley graphs”, Combinatorics, Probability and Computing, 15(4) (2006), 571–588 | DOI | MR | Zbl

[6] G. Grimmet, Percolation. 2nd edition, Springer-Verlag, Berlin, 1999, XIII+447 pp. | DOI | MR

[7] C. Borgs, J. T. Chayes, H. Kesten, J. Spencer, “The birth of the infinite cluster: finite-size scaling in percolation”, Communications in Mathematical Physics, 224(1) (2001), 153–204 | DOI | MR | Zbl

[8] T. V. Rusilko, “G-set kak stokhasticheskaya model seti peredachi dannykh”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2023), 45–54 | MR

[9] A. O. Zadorozhnyuk, “Monotonnost veroyatnostei sostoyanii sluchainogo bluzhdaniya na konechnykh reshetkakh”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2022), 38–45 | DOI | MR