Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2023_3_a6, author = {Zh. Shuai and G. Ma and Ya. Weichen and F. Zuo and S. V. Ablameyko}, title = {Car parking detection in images by using a semi-supervised modified {YOLOv5} model}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {72--81}, publisher = {mathdoc}, volume = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a6/} }
TY - JOUR AU - Zh. Shuai AU - G. Ma AU - Ya. Weichen AU - F. Zuo AU - S. V. Ablameyko TI - Car parking detection in images by using a semi-supervised modified YOLOv5 model JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2023 SP - 72 EP - 81 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a6/ LA - ru ID - BGUMI_2023_3_a6 ER -
%0 Journal Article %A Zh. Shuai %A G. Ma %A Ya. Weichen %A F. Zuo %A S. V. Ablameyko %T Car parking detection in images by using a semi-supervised modified YOLOv5 model %J Journal of the Belarusian State University. Mathematics and Informatics %D 2023 %P 72-81 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a6/ %G ru %F BGUMI_2023_3_a6
Zh. Shuai; G. Ma; Ya. Weichen; F. Zuo; S. V. Ablameyko. Car parking detection in images by using a semi-supervised modified YOLOv5 model. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 72-81. http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a6/
[1] M. Alam, D. Moroni, G. Pieri, M. Tampucci, M. Gomes, J. Fonseca, “Real-time smart parking systems integration in distributed ITS for smart cities”, Journal of Advanced Transportation, 2018 (2018), 1485652 | DOI
[2] F. Faheem, S. A. Mahmud, G. M. Khan, M. Rahman, H. Zafar, “A survey of intelligent car parking system”, Journal of Applied Research and Technology, 11(5) (2013), 714–726 | DOI
[3] R. Yusnita, F. Norbaya, N. Basharuddin, “Intelligent parking space detection system based on image processing”, International Journal of Innovation, Management and Technology, 3(3) (2012), 232–235 | DOI
[4] Ching-Chun. Huang, Hoang. Vu, Yi-Ren. Chen, “A multiclass boosting approach for integrating weal classifiers in parking space detection”, IEEE International conference on consumer electronics, IEEE, 2015, 314–315 | DOI
[5] R. Bohush, P. Yarashevich, S. Ablameyko, T. Kalganova, “Extraction of image parking spaces in intelligent video surveillance systems”, Machine Graphics and Vision, 27(1–4) (2018), 47–62 | DOI
[6] Hai. Wang, Yljie. Yu, Yingfeng. Cai, Xiaobo. Chen, Long. Chen, Qingchao. Liu, “A comparative study of state-of-the-art deep learning algorithms for vehicle detection”, IEEE Intelligent Transportation Systems Magazine, 11(2) (2019), 82–95 | DOI
[7] D. Acharya, W. Yan, K. Khoshelham, “Real-time image-based parking occupancy detection using deep learning”, Proceedings of the 5th annual conference, 2018, 33–40
[8] J. Nyambal, R. Klein, “Automated parking space detection using convolutional neural networks”, arXiv:2106.07228v1, 2021, 6 | DOI
[9] A. A. Naufal, C. Fatichah, N. Suciati, “Preprocessed mask RCNN for parking space detection in smart parking systems”, International Journal of Intelligent Engineering and Systems, 13(6) (2020), 255–265 | DOI
[10] J. Ahmad, Z. Lewis, P. Duraisamy, T. McDonald, “Parking lot monitoring using MRCNN”, 10th International conference on computing, communication and networking technologies, IEEE, 2019, 10–13 | DOI
[11] T. Agrawal, S. Urolagin, “Multi-angle parking detection system using mask R-CNN”, BDET-2020. Proceedings of the 2nd International conference on big data engineering and technology, Association for Computing Machinery, New York, 2020, 76–80 | DOI
[12] Guo. Yucheng, Shi. Hongtao, “Automatic parking system based on improved neural network algorithm and intelligent image analysis”, Computational Intelligence and Neuroscience, 2021 (2021), 4391864 | DOI
[13] Y. Miao, F. Liu, T. Hou, L. Liu, Y. Liu, “A nighttime vehicle detection method based on YOLOv3”, 2020 Chinese automation congress, IEEE, 2020, 6617–6621 | DOI
[14] Hai. Wang, Xinyu. Lou, Yingfeng. Cai, Yicheng. Li, Long. Chen, “Real-time vehicle detection algorithm based on vision and lidar point cloud fusion”, Journal of Sensors, 2019 (2019), 8473980 | DOI
[15] D. P. Carrasco, H. A. Rashwan, M. García, D. Puig, “T-YOLO: tiny vehicle detection based on YOLO and multi-scale convolutional neural networks”, IEEE Access, 11 (2023), 22430–22440 | DOI
[16] H. Bura, N. Lin, N. Kumar, S. Malekar, S. Nagaraj, K. Liu, “An edge based smart parking solution using camera networks and deep learning”, 2018 IEEE International conference on cognitive computing, IEEE, 2018, 17–24 | DOI
[17] M. Uzar, S. Ozturk, O. C. Bayrak, T. Arda, N. T. Ocalan, “Performance analysis of YOLO versions for automatic vehicle detection from UAV images”, Advanced Remote Sensing Journal, 1(1) (2021), 16–30
[18] F. F. F, Detailed YOLOv5 model framework [Internet], Lezhi Network Technology Co, Beijing, 2021 | DOI
[19] X. Zhu, A. B. Goldberg, Introduction to semi-supervised learning, Springer, Cham, 2009, XII+116 pp. | DOI | MR
[20] C. Rosenberg, M. Hebert, H. Schneiderman, “Semi-supervised self-training of object detection models”, Seventh IEEE workshops on applications of computer vision, IEEE, 2005, 29–36 | DOI
[21] Dong-Hyun. Lee, “Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks”, ICML 2013 workshop. challenges in representation learning. Volume 3, 2013, 2–4
[22] K. Sohn, Z. Zhang, C-L. Li, H. Zhang, C-Y. Lee, T. Pfister, “A simple semi-supervised learning framework for object detection”, arXiv:2005.04757, 2020, 15 | DOI | MR | Zbl
[23] K. Janocha, W. M. Czarnecki, “On loss functions for deep neural networks in classification”, arXiv:1702.05659, 2017, 10 | DOI
[24] Haoting. Zhang, Mei. Tian, Gaoping. Shao, Juan. Cheng, Jingjing. Liu, “Target detection of forward-looking sonar image based on improved YOLOv5”, IEEE Access, 10 (2022), 18023–18034 | DOI