Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2023_3_a4, author = {V. M. Volkov and E. I. Kachalouskaya}, title = {An iterative {Chebyshev} spectral solver for two-dimensional elliptic equations with variable coefficients}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {53--62}, publisher = {mathdoc}, volume = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a4/} }
TY - JOUR AU - V. M. Volkov AU - E. I. Kachalouskaya TI - An iterative Chebyshev spectral solver for two-dimensional elliptic equations with variable coefficients JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2023 SP - 53 EP - 62 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a4/ LA - ru ID - BGUMI_2023_3_a4 ER -
%0 Journal Article %A V. M. Volkov %A E. I. Kachalouskaya %T An iterative Chebyshev spectral solver for two-dimensional elliptic equations with variable coefficients %J Journal of the Belarusian State University. Mathematics and Informatics %D 2023 %P 53-62 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a4/ %G ru %F BGUMI_2023_3_a4
V. M. Volkov; E. I. Kachalouskaya. An iterative Chebyshev spectral solver for two-dimensional elliptic equations with variable coefficients. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 53-62. http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a4/
[1] J. P. Boyd, Chebyshev and Fourier spectral methods, 2nd edition, Dover Publications, New York, 2000, XVI+594 pp.
[2] L. N. Trefethen, Spectral methods in MATLAB, Society for Industrial and Applied Mathematics, Philadelphia, 2000, XVII+165 pp. | Zbl
[3] S. A. Orszag, “Spectral methods for problems in complex geometrics”, Numerical methods for partial differential equations, Proceedings of an advanced seminar, Publication of the Mathematics Research Center, 42, Academic Press, New York, 1979, 273–305 | DOI
[4] E. G. D’yakonov, Optimization in solving elliptic problems, CRC Press, Boca Raton, 2018, XXVIII+561 pp.
[5] D. Fortunato, A. Townsend, “Fast Poisson solvers for spectral methods”, IMA Journal of Numerical Analysis, 40(3) (2020), 1994–2018 | DOI | Zbl
[6] K. Jbilou, “ADI preconditioned Krylov methods for large Lyapunov matrix equations”, Linear Algebra and its Applications, 432(10) (2010), 2473–2485 | DOI | Zbl
[7] H. A. Van-der-Vorst, “Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems”, SIAM Journal on Scientific and Statistical Computing, 13(2) (1992), 631–644 | DOI | Zbl
[8] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, Moskva, 1978, +592 pp.
[9] R. H. Bartels, G. W. Stewart, “Algorithm 432 [C2]: solution of the matrix equation AX + XB = C [F4]”, Communications of the ACM, 15(9) (1972), 820–826 | DOI | Zbl
[10] T. Damm, “Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations”, Numerical Linear Algebra with Applications, 15(9) (2008), 853–871 | DOI | Zbl
[11] V. M. Volkov, E. V. Prokonina, “Iteratsionnaya realizatsiya raznostnykh skhem v metode fiktivnykh oblastei dlya ellipticheskikh zadach so smeshannymi proizvodnymi”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2019), 69–76 | DOI