On meromorphic solutions of the equations related to the non-stationary hierarchy of the second Painleve equation
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 19-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The non-stationary hierarchy of the second Painleve equation is herein considered. It is a sequence of polynomial ordinary differential equations of even order with a single differential-algebraic structure determined by the operator $\tilde{L}_{N}$. The first member of this hierarchy for $N = 1$ is the second Painleve equation, and the subsequent equations of $2N$ order contain arbitrary parameters. They are also named generalised higher analogues of the second Painleve equation of $2N$ order. The hierarchies of the first Painleve equation and the equation $P_{34}$ from the classification list of canonical Painleve equations are also associated with this hierarchy. In this paper, we also consider a second order linear equation the coefficients of which are determined by solutions of the hierarchy of the second Painleve equation and the equation $P_{34}$. Using the Frobenius method, we obtain sufficient conditions for the meromorphicity of the general solution of second-order linear equations with the coefficients defined by the solutions of the first three equations of the non-stationary hierarchy of the second Painleve equation and the equation $P_{34}$. We also find sufficient conditions for the rationality of the general solution of second-order linear equations with coefficients determined by rational solutions of the equations of the non-stationary hierarchy of the second Painleve equation and the equation $P_{34}$.
Keywords: Painleve equations; the hierarchy of the second Painleve equation; meromorphic solutions.
@article{BGUMI_2023_3_a1,
     author = {E. V. Gromak and V. I. Gromak},
     title = {On meromorphic solutions of the equations related to the non-stationary hierarchy of the second {Painleve} equation},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a1/}
}
TY  - JOUR
AU  - E. V. Gromak
AU  - V. I. Gromak
TI  - On meromorphic solutions of the equations related to the non-stationary hierarchy of the second Painleve equation
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 19
EP  - 31
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a1/
LA  - ru
ID  - BGUMI_2023_3_a1
ER  - 
%0 Journal Article
%A E. V. Gromak
%A V. I. Gromak
%T On meromorphic solutions of the equations related to the non-stationary hierarchy of the second Painleve equation
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 19-31
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a1/
%G ru
%F BGUMI_2023_3_a1
E. V. Gromak; V. I. Gromak. On meromorphic solutions of the equations related to the non-stationary hierarchy of the second Painleve equation. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 19-31. http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a1/

[1] E. L. Ains, Obyknovennye differentsialnye uravneniya, Nauchno-tekhnicheskoe izdatelstvo Ukrainy, Kharkov, 1939, 719 pp.

[2] V. I. Gromak, I. Laine, S. Shimomura, Painleve differential equations in the complex plane, De Gruyter, Berlin, 2002, 303 pp. | DOI | MR | Zbl

[3] N. A. Kudryashov, Metody nelineinoi matematicheskoi fiziki, Intellekt, Dolgoprudnyi, 2010, 364 pp.

[4] A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, A. S. Fokas, Transtsendenty Penleve: Metod zadachi Rimana, Institut kompyuternykh issledovanii, Moskva, 2005, 728 pp.

[5] R. Conte, M. Musette, The Painleve handbook, Springer, Dordrecht, 2008, XXIII+256 pp. | MR | Zbl

[6] V. I. Gromak, “Backlund transformatios of the higher order Painleve equations”, Backlund and Darboux transformations. The geometry of solitons. AARMS – CRM workshop, American Mathematical Society, Providence, 2001, 3–28 | DOI | MR | Zbl

[7] P. A. Clarkson, N. Joshi, A. Pickering, “Backlund transformations for the second Painleve hierarchy: a modified truncation approach”, Inverse Problems, 15(1) (1999), 175–187 | DOI | MR | Zbl

[8] P. A. Clarkson, E. L. Mansfield, “The second Painleve equation, its hierarchy and associated special polynomials”, Nonlinearity, 16(3) (2003), R1–R26 | DOI | MR | Zbl

[9] A. H. Sakka, “Linear problems and hierarchies of Painleve equations”, Journal of Physics A. Mathematical and Theoretical, 42(2) (2009), 025210 | DOI | MR | Zbl

[10] E. Gursa, Kurs matematicheskogo analiza. Tom 3. Chast 2, Integralnye uravneniya. Variatsionnoe ischislenie, Gosudarstvennoe tekhniko-teoreticheskoe izdatelstvo, Moskva, 1934, 318 pp.

[11] V. I. Gromak, “Analiticheskie svoistva reshenii uravnenii obobschennoi ierarkhii vtorogo uravneniya Penleve”, Differentsialnye uravneniya, 56(8) (2020), 1017–1033 | DOI | Zbl

[12] N. A. Kudryashov, “Amalgamations of the Painleve equations”, Journal of Mathematical Physics, 44(12) (2003), 6160–6178 | DOI | MR | Zbl

[13] I. Bobrova, “On symmetries of the non-stationary P(n) in step II hierarchy and their applications”, arXiv:2010.10617v2, 2020, 25 | DOI | MR

[14] H. Airault, “Rational solutions of Painleve equations”, Studies in Applied Mathematics, 61(1) (1979), 31–53 | DOI | MR | Zbl

[15] K. Okamoto, “Studies on the Painleve equations. Second and fourth Painleve equations, PII and PIV”, Mathematische Annalen, 275(2) (1986), 221–255 | DOI | MR | Zbl

[16] V. I. Gromak, A. S. Zenchenko, “On the theory of higher-order Painleve equations”, Differential Equations, 40(5) (2004), 625–633 | DOI | MR | Zbl

[17] V. I. Gromak, L. L. Golubeva, “Obobschennoe vtoroe uravnenie Penleve chetvertogo poryadka”, Vestsi NAN Belarusi. Seryya fizika-­matematychnykh navuk, 4 (2005), 5–10

[18] L. L. Golubeva, A. S. Zenchenko, “Nekotorye svoistva reshenii uravneniya (4P2)”, Trudy Instituta matematiki, 12(2) (2004), 54–56

[19] V. I. Gromak, “O resheniyakh uravneniya chetvertogo poryadka obobschennoi ierarkhii vtorogo uravneniya Penleve”, Differentsialnye uravneniya, 55(3) (2019), 337–347 | DOI | Zbl

[20] V. I. Gromak, “O svoistvakh reshenii uravnenii obobschennoi ierarkhii uravneniya P34”, Differentsialnye uravneniya, 58(2) (2022), 153–163 | Zbl

[21] A. Hinkkanen, I. Laine, “Solutions of the first and second Painleve equations are meromorphic”, Journal d’Analyse Mathematique, 79 (1999), 345–377 | DOI | MR | Zbl

[22] A. V. Domrin, B. I. Suleimanov, M. A. Shumkin, “O globalnoi meromorfnosti reshenii uravnenii Penleve i ikh ierarkhii”, Trudy Matematicheskogo instituta imeni VA Steklova, 311 (2020), 106–122 | DOI | Zbl

[23] A. V. Domrin, M. A. Shumkin, B. I. Suleimanov, “Meromorphy of solutions for a wide class of ordinary differential equations of Painleve type”, Journal of Mathematical Physics, 63(2) (2022), 023501 | DOI | MR | Zbl

[24] E. V. Gromak, “O meromorfnykh resheniyakh lineinykh uravnenii vtorogo poryadka, svyazannykh so vtorym uravneniem Penleve”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly. Seryya 2, Matematyka. Fizika. Іnfarmatyka, vylichalnaya tekhnika i kiravanne, 12(3) (2022), 42–49

[25] E. V. Gromak, V. I. Gromak, “O globalnoi meromorfnosti reshenii lineinykh uravnenii, svyazannykh so vtorym uravneniem Penleve i ego ierarkhiei”, Eruginskie chteniya – 2023. Materialy XXI Mezhdunarodnoi nauchnoi konferentsii po differentsialnym uravneniyam. Chast 1, Belorussko-Rossiiskii universitet, Mogilev, 2023, 9–11

[26] E. V. Gromak, “O meromorfnykh resheniyakh uravnenii, svyazannykh s pervym uravneniem Penleve”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2022), 15–22 | DOI