Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2023_3_a1, author = {E. V. Gromak and V. I. Gromak}, title = {On meromorphic solutions of the equations related to the non-stationary hierarchy of the second {Painleve} equation}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {19--31}, publisher = {mathdoc}, volume = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a1/} }
TY - JOUR AU - E. V. Gromak AU - V. I. Gromak TI - On meromorphic solutions of the equations related to the non-stationary hierarchy of the second Painleve equation JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2023 SP - 19 EP - 31 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a1/ LA - ru ID - BGUMI_2023_3_a1 ER -
%0 Journal Article %A E. V. Gromak %A V. I. Gromak %T On meromorphic solutions of the equations related to the non-stationary hierarchy of the second Painleve equation %J Journal of the Belarusian State University. Mathematics and Informatics %D 2023 %P 19-31 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a1/ %G ru %F BGUMI_2023_3_a1
E. V. Gromak; V. I. Gromak. On meromorphic solutions of the equations related to the non-stationary hierarchy of the second Painleve equation. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 19-31. http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a1/
[1] E. L. Ains, Obyknovennye differentsialnye uravneniya, Nauchno-tekhnicheskoe izdatelstvo Ukrainy, Kharkov, 1939, 719 pp.
[2] V. I. Gromak, I. Laine, S. Shimomura, Painleve differential equations in the complex plane, De Gruyter, Berlin, 2002, 303 pp. | DOI | MR | Zbl
[3] N. A. Kudryashov, Metody nelineinoi matematicheskoi fiziki, Intellekt, Dolgoprudnyi, 2010, 364 pp.
[4] A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, A. S. Fokas, Transtsendenty Penleve: Metod zadachi Rimana, Institut kompyuternykh issledovanii, Moskva, 2005, 728 pp.
[5] R. Conte, M. Musette, The Painleve handbook, Springer, Dordrecht, 2008, XXIII+256 pp. | MR | Zbl
[6] V. I. Gromak, “Backlund transformatios of the higher order Painleve equations”, Backlund and Darboux transformations. The geometry of solitons. AARMS – CRM workshop, American Mathematical Society, Providence, 2001, 3–28 | DOI | MR | Zbl
[7] P. A. Clarkson, N. Joshi, A. Pickering, “Backlund transformations for the second Painleve hierarchy: a modified truncation approach”, Inverse Problems, 15(1) (1999), 175–187 | DOI | MR | Zbl
[8] P. A. Clarkson, E. L. Mansfield, “The second Painleve equation, its hierarchy and associated special polynomials”, Nonlinearity, 16(3) (2003), R1–R26 | DOI | MR | Zbl
[9] A. H. Sakka, “Linear problems and hierarchies of Painleve equations”, Journal of Physics A. Mathematical and Theoretical, 42(2) (2009), 025210 | DOI | MR | Zbl
[10] E. Gursa, Kurs matematicheskogo analiza. Tom 3. Chast 2, Integralnye uravneniya. Variatsionnoe ischislenie, Gosudarstvennoe tekhniko-teoreticheskoe izdatelstvo, Moskva, 1934, 318 pp.
[11] V. I. Gromak, “Analiticheskie svoistva reshenii uravnenii obobschennoi ierarkhii vtorogo uravneniya Penleve”, Differentsialnye uravneniya, 56(8) (2020), 1017–1033 | DOI | Zbl
[12] N. A. Kudryashov, “Amalgamations of the Painleve equations”, Journal of Mathematical Physics, 44(12) (2003), 6160–6178 | DOI | MR | Zbl
[13] I. Bobrova, “On symmetries of the non-stationary P(n) in step II hierarchy and their applications”, arXiv:2010.10617v2, 2020, 25 | DOI | MR
[14] H. Airault, “Rational solutions of Painleve equations”, Studies in Applied Mathematics, 61(1) (1979), 31–53 | DOI | MR | Zbl
[15] K. Okamoto, “Studies on the Painleve equations. Second and fourth Painleve equations, PII and PIV”, Mathematische Annalen, 275(2) (1986), 221–255 | DOI | MR | Zbl
[16] V. I. Gromak, A. S. Zenchenko, “On the theory of higher-order Painleve equations”, Differential Equations, 40(5) (2004), 625–633 | DOI | MR | Zbl
[17] V. I. Gromak, L. L. Golubeva, “Obobschennoe vtoroe uravnenie Penleve chetvertogo poryadka”, Vestsi NAN Belarusi. Seryya fizika-matematychnykh navuk, 4 (2005), 5–10
[18] L. L. Golubeva, A. S. Zenchenko, “Nekotorye svoistva reshenii uravneniya (4P2)”, Trudy Instituta matematiki, 12(2) (2004), 54–56
[19] V. I. Gromak, “O resheniyakh uravneniya chetvertogo poryadka obobschennoi ierarkhii vtorogo uravneniya Penleve”, Differentsialnye uravneniya, 55(3) (2019), 337–347 | DOI | Zbl
[20] V. I. Gromak, “O svoistvakh reshenii uravnenii obobschennoi ierarkhii uravneniya P34”, Differentsialnye uravneniya, 58(2) (2022), 153–163 | Zbl
[21] A. Hinkkanen, I. Laine, “Solutions of the first and second Painleve equations are meromorphic”, Journal d’Analyse Mathematique, 79 (1999), 345–377 | DOI | MR | Zbl
[22] A. V. Domrin, B. I. Suleimanov, M. A. Shumkin, “O globalnoi meromorfnosti reshenii uravnenii Penleve i ikh ierarkhii”, Trudy Matematicheskogo instituta imeni VA Steklova, 311 (2020), 106–122 | DOI | Zbl
[23] A. V. Domrin, M. A. Shumkin, B. I. Suleimanov, “Meromorphy of solutions for a wide class of ordinary differential equations of Painleve type”, Journal of Mathematical Physics, 63(2) (2022), 023501 | DOI | MR | Zbl
[24] E. V. Gromak, “O meromorfnykh resheniyakh lineinykh uravnenii vtorogo poryadka, svyazannykh so vtorym uravneniem Penleve”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly. Seryya 2, Matematyka. Fizika. Іnfarmatyka, vylichalnaya tekhnika i kiravanne, 12(3) (2022), 42–49
[25] E. V. Gromak, V. I. Gromak, “O globalnoi meromorfnosti reshenii lineinykh uravnenii, svyazannykh so vtorym uravneniem Penleve i ego ierarkhiei”, Eruginskie chteniya – 2023. Materialy XXI Mezhdunarodnoi nauchnoi konferentsii po differentsialnym uravneniyam. Chast 1, Belorussko-Rossiiskii universitet, Mogilev, 2023, 9–11
[26] E. V. Gromak, “O meromorfnykh resheniyakh uravnenii, svyazannykh s pervym uravneniem Penleve”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2022), 15–22 | DOI