Solutions of problems with discontinuous conditions for the wave equation
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 6-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider various approaches to solving of mixed problems with discontinuous conditions based on functional and classical methods. We show differences in solutions, which correspond to different techniques (the Laplace transform and the method of characteristics) and definitions. We demonstrate the results on the case of one boundary-value problem from the theory of mechanical impact about longitudinal oscillations of a semi-infinite elastic rod with discontinuous initial and boundary conditions. A model example is the problem of vibrations of the rod after a longitudinal impact on the end (e. g., shooting a plasticine bullet sticking to the end of a rod).
Keywords: One-dimensional wave equation; inhomogeneous equation; mixed problem; discontinuous initial conditions; discontinuous boundary conditions; longitudinal impact; method of characteristics; Laplace transform.
@article{BGUMI_2023_3_a0,
     author = {V. I. Korzyuk and J. V. Rudzko and V. V. Kolyachko},
     title = {Solutions of problems with discontinuous conditions for the wave equation},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {6--18},
     publisher = {mathdoc},
     volume = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a0/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - J. V. Rudzko
AU  - V. V. Kolyachko
TI  - Solutions of problems with discontinuous conditions for the wave equation
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 6
EP  - 18
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a0/
LA  - ru
ID  - BGUMI_2023_3_a0
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A J. V. Rudzko
%A V. V. Kolyachko
%T Solutions of problems with discontinuous conditions for the wave equation
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 6-18
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a0/
%G ru
%F BGUMI_2023_3_a0
V. I. Korzyuk; J. V. Rudzko; V. V. Kolyachko. Solutions of problems with discontinuous conditions for the wave equation. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2023), pp. 6-18. http://geodesic.mathdoc.fr/item/BGUMI_2023_3_a0/

[1] M. A. Zhuravkov, E. I. Starovoitov, Matematicheskie modeli mekhaniki tverdykh tel, BGU, Minsk, 2021, 535 pp.

[2] Zh. Adamar, Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, Moskva, 1978, 352 pp. | MR

[3] V. A. Babeshko, S. V. Ratner, P. V. Syromyatnikov, “On mixed problems for thermoelectroelastic media with discontinuous boundary conditions”, Doklady Physics, 52(2) (2007), 90–95 | DOI | MR

[4] A. V. Glushko, S. A. Baeva, “Ob odnoi nachalno-kraevoi zadache gidrodinamiki s razryvnymi granichnymi usloviyami”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya. Fizika. Matematika, 2 (2005), 128–132 | Zbl

[5] T. Trogdon, G. Biondini, “Evolution partial differential equations with discontinuous data”, Quarterly of Applied Mathematics, 77(4) (2019), 689–726 | DOI | MR | Zbl

[6] V. P. Kozlov, P. A. Mandrik, N. I. Yurchuk, “Method for solving nonstationary heat problems with mixed discontinuous boundary conditions on the boundary of a half-space”, Differential Equations, 37(8) (2001), 1171–1175 | DOI | MR | Zbl

[7] V. P. Kozlov, P. A. Mandrik, “Solution of nonlinear two-dimensional differential equations of transfer with discontinuity boundary conditions on the surface of an isotropic semiinfinite body in its heating through a circle of known radius”, Journal of Engineering Physics and Thermophysics, 74(2) (2001), 471–476 | DOI

[8] S. I. Gaiduk, V. A. Dobrushkin, “Reshenie odnoi zadachi iz teorii termouprugosti, svyazannoi s mekhanicheskim i teplovym udarami”, Differentsialnye uravneniya, 15(9) (1979), 1632–1645 | Zbl

[9] J. Cerv, V. Adamek, F. Vales, D. Gabriel, J. Plesek, “Wave motion in a thick cylindrical rod undergoing longitudinal impact”, Wave Motion, 66 (2016), 88–105 | DOI | MR | Zbl

[10] N. I. Yurchuk, V. P. Kozlov, P. A. Mandrik, “A method of paired integral equations in the region of laplace transforms for solving nonstationary heat conduction problems with mixed discontinuous boundary conditions”, Journal of Engineering Physics and Thermophysics, 72(3) (1999), 534–549 | DOI | MR

[11] V. P. Kozlov, N. I. Yurchuk, P. A. Mandrik, “Method of paired integral equations in the region of L-transforms for solving two-dimensional problems of nonstationary heat conduction with mixed boundary conditions”, Journal of Engineering Physics and Thermophysics, 71(4) (1998), 731–739 | DOI | MR

[12] V. I. Korzyuk, Ya. V. Rudko, “Zadacha o prodolnom udare po uprugomu sterzhnyu s uprugim zakrepleniem odnogo iz kontsov”, Priborostroenie-2022. Materialy 15-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, Belorusskii natsionalnyi tekhnicheskii universitet, Minsk, 2022, 305–307

[13] R. M. Bakhshinyan, Ya. V. Veinert, I. V. Denisova, “Ob odnom metode resheniya zadachi nestatsionarnoi teploprovodnosti shara s razryvnymi granichnymi usloviyami”, Tekhnicheskie nauki. teoriya i praktika. Materialy Mezhdunarodnoi zaochnoi nauchnoi konferentsii, Molodoi uchenyi, Chita, 2012, 120–123

[14] S. I. Gaiduk, “Application of the contour integral method to the solution of a problem on transverse vibrations of a viscoelastic membrane caused by an impact”, Differential Equations, 27(8) (1991), 977–985 | MR | Zbl

[15] M. Akhondizadeh, “Analytical solution of the longitudinal wave propagation due to the single impact”, Journal of Low Frequency Noise, Vibration and Active Control, 37(4) (2018), 849–858 | DOI

[16] A. K. Belyaev, N. F. Morozov, P. E. Tovstik, T. P. Tovstik, “Beating in the problem of longitudinal impact on a thin rod”, Mechanics of Solids, 50(4) (2015), 451–462 | DOI | MR

[17] A. K. Belyaev, N. F. Morozov, P. E. Tovstik, T. P. Tovstik, “Parametric resonances in the problem of longitudinal impact on a thin rod”, Vestnik St. Petersburg University. Mathematics, 49(1) (2016), 53–67 | DOI | MR | Zbl

[18] F. Vales, S. Moravka, R. Brepta, J. Cerv, “Wave propagation in a thick cylindrical bar due to longitudinal impact”, JSME International Journal. Series A, Solid Mechanics and Material Engineering, 39(1) (1996), 60–70 | DOI

[19] V. Yurko, “Integral transforms connected with discontinuous boundary value problems”, Integral Transforms and Special Functions, 10(2) (2000), 141–164 | DOI | MR | Zbl

[20] H. Bateman, “Physical problems with discontinuous initial conditions”, PNAS, 16(3) (1930), 205–211 | DOI

[21] A. D. Polyanin, Handbook of linear partial differential equations for engineers and scientists, Chapman and Hall/CRC, New York, 2001, 800 pp. | DOI | MR

[22] V. P. Pikulin, S. I. Pokhozhaev, Prakticheskii kurs po uravneniyam matematicheskoi fiziki. 2-e izdanie, MTsNMO, Moskva, 2004, 208 pp.

[23] V. I. Korzyuk, Ya. V. Rudko, “Klassicheskoe reshenie odnoi zadachi ob absolyutno neuprugom udare po dlinnomu uprugomu polubeskonechnomu sterzhnyu c lineinym uprugim elementom na kontse”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2022), 34–46 | DOI

[24] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike. 2-e izdanie, Nauka, Moskva, 1978, 688 pp. | MR

[25] G. B. Whitham, Linear and nonlinear waves, John Wiley and Sons, New York, 1999, XVI+636 pp. | DOI | MR

[26] A. G. Kulikovskii, E. I. Sveshnikova, A. P. Chugainova, Matematicheskie metody izucheniya razryvnykh reshenii nelineinykh giperbolicheskikh sistem uravnenii, MIAN, Moskva, 2010, 120 pp. | DOI

[27] O. A. Ladyzhenskaya, “Shestaya problema tysyacheletiya: uravneniya Nave – Stoksa, suschestvovanie i gladkost”, Uspekhi matematicheskikh nauk, 58(2) (2003), 45–78 | DOI | Zbl

[28] V. I. Korzyuk, I. S. Kozlovskaya, Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii. Chast 2, BGU, Minsk, 2017, 48 pp.

[29] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, Moskva, 1970, 712 pp.

[30] V. K. Novatskii, Volnovye zadachi teorii plastichnosti, Mir, Moskva, 1978, 307 pp.

[31] N. I. Gorbach, Teoreticheskaya mekhanika. Dinamika. 2-e izdanie, Vysheishaya shkola, Minsk, 2012, 320 pp.

[32] Yu. N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, Nauka, Moskva, 1979, 744 pp.

[33] V. I. Korzyuk, Uravneniya matematicheskoi fiziki. 2-e izdanie, URSS, Moskva, 2021, 480 pp.

[34] N. I. Yurchuk, E. N. Novikov, “Neobkhodimye usloviya dlya suschestvovaniya klassicheskikh reshenii uravneniya kolebanii poluogranichennoi struny”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 4 (2016), 116–120 | MR

[35] F. E. Lomovtsev, V. V. Lysenko, “Nekharakteristicheskaya smeshannaya zadacha dlya odnomernogo volnovogo uravneniya v pervoi chetverti ploskosti pri nestatsionarnykh granichnykh vtorykh proizvodnykh”, Vesnik Vitsebskaga dzyarzhaunaga universiteta, 3 (2019), 5–17

[36] V. V. Lysenko, F. E. Lomovtsev, “Reshenie i kriterii korrektnosti smeshannoi zadachi dlya obschego uravneniya kolebanii poluogranichennoi struny pri nekharakteristicheskikh i nestatsionarnykh vtorykh proizvodnykh na granitse”, Eruginskie chteniya – 2019. Materialy XIX Mezhdunarodnoi nauchnoi konferentsii po differentsialnym uravneniyam. Chast 2, Institut matematiki NAN Belarusi, Minsk, 2019, 30–32

[37] V. I. Korzyuk, O. A. Kovnatskaya, “Resheniya zadach dlya volnovogo uravneniya s usloviyami na kharakteristikakh”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 57(2) (2021), 148–155 | DOI | MR

[38] V. I. Korzyuk, O. A. Kovnatskaya, “Zadacha Gursa na ploskosti dlya kvazilineinogo giperbolicheskogo uravneniya”, Eruginskie chteniya – 2022. Materialy XX Mezhdunarodnoi nauchnoi konferentsii po differentsialnym uravneniyam. Chast 2, Polotskii gosudarstvennyi universitet, Novopolotsk, 2022, 16–17

[39] V. I. Korzyuk, I. I. Stolyarchuk, “Classical solution of the first mixed problem for second-order hyperbolic equation in curvilinear half-strip with variable coefficients”, Differential Equations, 53(1) (2017), 74–85 | DOI | MR | Zbl

[40] V. I. Korzyuk, S. N. Naumovets, V. P. Serikov, “Smeshannaya zadacha dlya odnomernogo volnovogo uravneniya s usloviyami sopryazheniya i proizvodnymi vtorogo poryadka v granichnykh usloviyakh”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizikamatematychnykh navuk, 56(3) (2020), 287–297 | DOI

[41] V. I. Korzyuk, Ya. V. Rudko, “Klassicheskoe reshenie odnoi zadachi ob absolyutno neuprugom udare po dlinnomu uprugomu polubeskonechnomu sterzhnyu”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 57(4) (2021), 417–427 | DOI | MR

[42] V. I. Korzyuk, Ya. V. Rudko, “Klassicheskoe reshenie smeshannoi zadachi dlya odnomernogo volnovogo uravneniya s negladkim vtorym usloviem Koshi”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 57(1) (2021), 23–32 | DOI | MR

[43] V. I. Korzyuk, Ya. V. Rudko, “Klassicheskoe reshenie smeshannoi zadachi dlya odnomernogo volnovogo uravneniya s negladkim vtorym usloviem Koshi”, Doklady Natsionalnoi akademii nauk Belarusi, 64(6) (2020), 657–662 | DOI | MR