A two-stage approach to forecasting the divergence of time scales based on an adjusted linear model
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 80-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents the results of a study of the accuracy of a two-stage approach to forecasting the divergence of time scales of GLONASS spacecraft relative to the system time scale for intervals of up to 2 h. At the first stage a linear model is constructed on the results of measurements of the divergence of time scales on the selected dimensional interval based on the least squares method, the offset of the smoothed estimate of the divergence of time scales at the end of the dimensional interval relative to the linear trend found over the entire dimensional interval is determined, the constant coefficient of the linear model is corrected. At the second stage the unaccounted residual component of the time series of the time scale divergence values is determined and an AR model describing it is constructed. A comparative analysis of the accuracy of the forecast of the divergence of time scales according to a linear model with an adjusted constant coefficient and the forecast using its combination with an AR model is carried out. The analysis of the numerical results obtained during the annual observation interval showed that for all spacecraft, the use of a two-stage approach makes it possible to reduce the standard deviation of the forecast of time scale divergence, as well as to increase the number of forecast implementations for which the standard deviation does not exceed 0.3– 0.5 ns.
Keywords: divergence of time scales; onboard time scale; synchronisation; time measurement; least squares method; time-frequency corrections; forecasting.
@article{BGUMI_2023_2_a7,
     author = {O. S. Chernikova and T. A. Marareskul},
     title = {A two-stage approach to forecasting the divergence of time scales based on an adjusted linear model},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {80--93},
     publisher = {mathdoc},
     volume = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a7/}
}
TY  - JOUR
AU  - O. S. Chernikova
AU  - T. A. Marareskul
TI  - A two-stage approach to forecasting the divergence of time scales based on an adjusted linear model
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 80
EP  - 93
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a7/
LA  - ru
ID  - BGUMI_2023_2_a7
ER  - 
%0 Journal Article
%A O. S. Chernikova
%A T. A. Marareskul
%T A two-stage approach to forecasting the divergence of time scales based on an adjusted linear model
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 80-93
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a7/
%G ru
%F BGUMI_2023_2_a7
O. S. Chernikova; T. A. Marareskul. A two-stage approach to forecasting the divergence of time scales based on an adjusted linear model. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 80-93. http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a7/

[1] O. Montenbruck, P. Steigenberger, E. Schonemann, A. Hauschild, U. Hugentobler, R. Dach, “Flight characterization of new generation GNSS satellite clocks”, Navigation, 59:4 (2012), 291–302 | DOI

[2] A. V. Saltsberg, K. G. Shupen, “Rol sinkhronizatsii vremeni v GNSS i osobennosti postroeniya vysokotochnogo prognoza raskhozhdeniya shkal vremeni”, Sistemnyi analiz, upravlenie i navigatsiya, Tezisy dokladov XXV Mezhdunarodnoi nauchnoi konferentsii (Evpatoriya, Krym), Izdatelstvo Moskovskogo aviatsionnogo instituta, Moskva, 2021, 50–51

[3] Xiaogang. Liu, Xiaoping. Wu, Yanfeng. Tian, Y. u. Deng, “Study on automic prediction of time based on interpolation model with Tchebytchev polynomials”, Journal of Geodesy and Geodynamics, 30:1 (2010), 77–82

[4] Lingfeng. Zhu, Chao. Li, L. i. Liu, Liucheng. Chen, Enqiang. Dong, “Research on methods for predicting clock error based on domestic hydrogen atomic clock”, Journal of Geodesy and Geodynamics, 29:1 (2009), 148–151

[5] Yupu. Wang, Zhiping. Lu, Dashuang. Sun, Ning. Wang, “A new navigation satellite clock bias prediction method based on modified clock-bias quadratic polynomial model”, Acta Astronomica Sinica, 57:1 (2016), 78–90

[6] Xueqing. Xu, Xiaogong. Hu, Yonghong. Zhou, Yezhi. Song, “Research on high accuracy prediction model of satellite clock bias”, China satellite navigation conference (CSNC) 2014 proceedings, v. 3, Lecture notes in electrical engineering, 305, Springer, Berlin, 2014, 155–164 | DOI

[7] Qiang. Liu, Jizhe. Sun, Xihong. Chen, Jiye. Liu, Qun. Zhang, “Application analysis of CPSO-LSSVM algorithm in AR clock error prediction”, Journal of Jilin University (Engineering and Technology Edition), 44:3 (2014), 807–811 | DOI

[8] Junyi. Xu, Anmin. Zeng, “Application of ARIMA (0, 2, q) model to prediction of satellite clock error”, Journal of Geodesy and Geodynamics, 29:5 (2009), 116–120

[9] Guan. Huang, Qin. Zhang, Guo. Xu, “Real-time clock offset prediction with an improved model”, GPS Solution, 18:1 (2014), 95–104 | DOI

[10] Yueji. Liang, Chao. Ren, Xiufa. Yang, Guangfeng. Pang, Lan. Lan, “A grey model based on first differences in the application of satellite clock bias prediction”, Chinese Astronomy and Astrophysics, 40:1 (2016), 79–93 | DOI

[11] Y. e. Yu, M. o. Huang, Tao. Duan, Changyuan. Wang, Rui. Hu, “Enhancing satellite clock bias prediction accuracy in the case of jumps with an improved grey model”, Mathematical Problems in Engineering, 8186 (2020), 568 | DOI

[12] Zuoya. Zheng, Yamin. Dang, Xiushan. Lu, Weimei. Xu, “Prediction model with periodic item and its application to the prediction of GPS satellite clock bias”, Acta Astronomica Sinica, 51:1 (2010), 95–102

[13] A. V. Saltsberg, K. G. Shupen, “Vozmozhnosti ispolzovaniya filtra Kalmana dlya sinkhronizatsii i prognozirovaniya chastotno-vremennykh popravok bortovykh shkal vremeni kosmicheskikh apparatov sistemy GLONASS”, Almanakh sovremennoi metrologii, 10 (2017), 167–179

[14] Guanwen. Huang, Qin. Zhang, “Real-time estimation of satellite clock offset using adaptively robust Kalman filter with classified adaptive factors”, GPS Solutions, 16:4 (2012), 531–539 | DOI

[15] O. S. Chernikova, T. A. Marareskul, “Prognozirovanie raskhozhdeniya shkal vremeni na osnove skorrektirovannoi lineinoi modeli”, Sistemy analiza i obrabotki dannykh, 87:3 (2022), 37–58 | DOI

[16] V. S. Ganzha, T. A. Marareskul, D. S. Muratov, “Kalibrovka bortovoi apparatury izmereniya psevdodalnosti mezhdu kosmicheskimi apparatami dlya povysheniya tochnosti opredeleniya raskhozhdeniya ikh shkal vremeni”, Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 12 (2021), 100–106 | DOI

[17] A. I. Zhdanov, O. A. Katsyuba, “Identifikatsiya po metodu naimenshikh kvadratov parametrov uravnenii avtoregressii pri additivnykh oshibkakh izmerenii”, Avtomatika i telemekhanika, 2 (1982), 29–38 | Zbl