The $G$-network as a stochastic data network model
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 45-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The primary objective of this paper is the mathematical modelling of a data network consisting of terminal devices connected by routing devices and data links. A closed exponential $G$-network of single-server queueing nodes with positive requests and signals is used as a stochastic model. The model is studied in the asymptotic case of a large number of requests being processed. The mathematical approach used makes it possible to calculate the main statistical characteristics of a Markov process describing the model state, as well as to reconstruct analytically its normal probability density function based on the Gaussian approximation method. The results of the study allow us to analyse the data network performance in both transient and steady state. The areas of implementation of the research results are the pre-design of data networks and solving problems of their optimisation.
Keywords: $G$-network; data network; queueing network; asymptotic analysis; Gaussian approximation; mathematical modelling.
@article{BGUMI_2023_2_a4,
     author = {T. V. Rusilko},
     title = {The $G$-network as a stochastic data network model},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {45--54},
     publisher = {mathdoc},
     volume = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a4/}
}
TY  - JOUR
AU  - T. V. Rusilko
TI  - The $G$-network as a stochastic data network model
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 45
EP  - 54
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a4/
LA  - en
ID  - BGUMI_2023_2_a4
ER  - 
%0 Journal Article
%A T. V. Rusilko
%T The $G$-network as a stochastic data network model
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 45-54
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a4/
%G en
%F BGUMI_2023_2_a4
T. V. Rusilko. The $G$-network as a stochastic data network model. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 45-54. http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a4/

[1] E. Gelenbe, “Product-form queueing networks with negative and positive customers”, Journal of Applied Probability, 28:3 (1991), 656–663 | DOI | MR | Zbl

[2] E. Gelenbe, “G-networks by triggered customer movement”, Journal of Applied Probability, 30:3 (1993), 742–748 | DOI | MR | Zbl

[3] E. Gelenbe, “G-networks with signals and batch removal”, Probability in the Engineering and Informational Sciences, 7:3 (1993), 335–342 | DOI

[4] M. U. Caglayan, “G-networks and their applications to machine learning, energy packet networks and routing: introduction to the special issue”, Probability in the Engineering and Informational Sciences, 31:4 (2017), 381–395 | DOI | MR | Zbl

[5] Yunxiao. Zhang, “Optimal energy distribution with energy packet networks”, Probability in the Engineering and Informational Sciences, 35:1 (2021), 75–91 | DOI | MR | Zbl

[6] E. Gelenbe, “Steps toward self-aware networks”, Communications of the ACM, 52:7 (2009), 66–75 | DOI

[7] M. Matalytski, V. Naumenko, “Investigation of G-network with signals at transient behavior”, Journal of Applied Mathematics and Computational Mechanics, 13:1 (2014), 75–86 | DOI | Zbl

[8] E. Gelenbe, G. Pujolle, Introduction to queueing networks. 2nd edition, John Wiley and Sons, Chichester, 1998, XIII+244 pp. | MR

[9] T. V. Rusilko, “Network stochastic call centre model”, Distance learning technologies – 2021 (DLT-2021), Selected papers of the VI International scientific and practical conference (Yalta, Crimea), CEUR Workshop Proceedings, 3057, 2021, 91–101

[10] T. Rusilko, “Asymptotic analysis of a closed G-network of unreliable nodes”, Journal of Applied Mathematics and Computational Mechanics, 21:2 (2022), 91–102 | DOI | MR

[11] M. A. Matalytskii, T. V. Romanyuk, Priblizhennye metody analiza setei s tsentralnoi sistemoi obsluzhivaniya i ikh primeneniya, GrGU, Grodno, 2003, 200 pp.

[12] G. A. Medvedev, “Zamknutye sistemy massovogo obsluzhivaniya i ikh optimizatsiya”, Izvestiya Akademii nauk SSSR. Tekhnicheskaya kibernetika, 6 (1978), 199–203

[13] V. I. Tikhonov, M. A. Mironov, Markovskie protsessy, Sovetskoe radio, Moskva, 1977, 488 pp. | MR

[14] Yu. I. Paraev, Vvedenie v statisticheskuyu dinamiku protsessov upravleniya i filtratsii, Biblioteka tekhnicheskoi kibernetiki, Sovetskoe radio, Moskva, 1976, 184 pp.

[15] K. V. Gardiner, Stokhasticheskie metody v estestvennykh naukakh, Mir, Moskva, 1986, 526 pp.

[16] T. V. Rusilko, “Metod opredeleniya momentov pervykh dvukh poryadkov dlya vektora sostoyaniya seti massovogo obsluzhivaniya v asimptoticheskom sluchae”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly. Seryya 2, Matematyka. Fizika. Іnfarmatyka, vylichalnaya tekhnika i kiravanne, 11:2 (2021), 152–161

[17] T. V. Rusilko, “Metod gaussova priblizheniya dlya opredeleniya plotnosti veroyatnosti vektora sostoyaniya seti massovogo obsluzhivaniya v asimptoticheskom sluchae”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly. Seryya 2, Matematyka. Fizika. Іnfarmatyka, vylichalnaya tekhnika i kiravanne, 12:3 (2022), 151–161

[18] T. T. Tu, AYu. Kharin, “Sequential probability ratio test for many simple hypotheses on parameters of time series with trend”, Journal of the Belarusian State University. Mathematics and Informatics, 1 (2019), 35–45 | DOI | MR

[19] T. V. Rusilko, “Application of queueing network models in insurance”, Izvestiya of Saratov University. New series. Series. Mathematics. Mechanics. Informatics, 22:3 (2022), 315–321 | DOI | MR | Zbl

[20] M. A. Matalytski, “Forecasting anticipated incomes in the Markov networks with positive and negative customers”, Automation and Remote Control, 78:5 (2017), 815–825 | DOI | MR | Zbl