Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2023_2_a4, author = {T. V. Rusilko}, title = {The $G$-network as a stochastic data network model}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {45--54}, publisher = {mathdoc}, volume = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a4/} }
T. V. Rusilko. The $G$-network as a stochastic data network model. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 45-54. http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a4/
[1] E. Gelenbe, “Product-form queueing networks with negative and positive customers”, Journal of Applied Probability, 28:3 (1991), 656–663 | DOI | MR | Zbl
[2] E. Gelenbe, “G-networks by triggered customer movement”, Journal of Applied Probability, 30:3 (1993), 742–748 | DOI | MR | Zbl
[3] E. Gelenbe, “G-networks with signals and batch removal”, Probability in the Engineering and Informational Sciences, 7:3 (1993), 335–342 | DOI
[4] M. U. Caglayan, “G-networks and their applications to machine learning, energy packet networks and routing: introduction to the special issue”, Probability in the Engineering and Informational Sciences, 31:4 (2017), 381–395 | DOI | MR | Zbl
[5] Yunxiao. Zhang, “Optimal energy distribution with energy packet networks”, Probability in the Engineering and Informational Sciences, 35:1 (2021), 75–91 | DOI | MR | Zbl
[6] E. Gelenbe, “Steps toward self-aware networks”, Communications of the ACM, 52:7 (2009), 66–75 | DOI
[7] M. Matalytski, V. Naumenko, “Investigation of G-network with signals at transient behavior”, Journal of Applied Mathematics and Computational Mechanics, 13:1 (2014), 75–86 | DOI | Zbl
[8] E. Gelenbe, G. Pujolle, Introduction to queueing networks. 2nd edition, John Wiley and Sons, Chichester, 1998, XIII+244 pp. | MR
[9] T. V. Rusilko, “Network stochastic call centre model”, Distance learning technologies – 2021 (DLT-2021), Selected papers of the VI International scientific and practical conference (Yalta, Crimea), CEUR Workshop Proceedings, 3057, 2021, 91–101
[10] T. Rusilko, “Asymptotic analysis of a closed G-network of unreliable nodes”, Journal of Applied Mathematics and Computational Mechanics, 21:2 (2022), 91–102 | DOI | MR
[11] M. A. Matalytskii, T. V. Romanyuk, Priblizhennye metody analiza setei s tsentralnoi sistemoi obsluzhivaniya i ikh primeneniya, GrGU, Grodno, 2003, 200 pp.
[12] G. A. Medvedev, “Zamknutye sistemy massovogo obsluzhivaniya i ikh optimizatsiya”, Izvestiya Akademii nauk SSSR. Tekhnicheskaya kibernetika, 6 (1978), 199–203
[13] V. I. Tikhonov, M. A. Mironov, Markovskie protsessy, Sovetskoe radio, Moskva, 1977, 488 pp. | MR
[14] Yu. I. Paraev, Vvedenie v statisticheskuyu dinamiku protsessov upravleniya i filtratsii, Biblioteka tekhnicheskoi kibernetiki, Sovetskoe radio, Moskva, 1976, 184 pp.
[15] K. V. Gardiner, Stokhasticheskie metody v estestvennykh naukakh, Mir, Moskva, 1986, 526 pp.
[16] T. V. Rusilko, “Metod opredeleniya momentov pervykh dvukh poryadkov dlya vektora sostoyaniya seti massovogo obsluzhivaniya v asimptoticheskom sluchae”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly. Seryya 2, Matematyka. Fizika. Іnfarmatyka, vylichalnaya tekhnika i kiravanne, 11:2 (2021), 152–161
[17] T. V. Rusilko, “Metod gaussova priblizheniya dlya opredeleniya plotnosti veroyatnosti vektora sostoyaniya seti massovogo obsluzhivaniya v asimptoticheskom sluchae”, Vesnik Grodzenskaga dzyarzhaunaga universiteta imya Yanki Kupaly. Seryya 2, Matematyka. Fizika. Іnfarmatyka, vylichalnaya tekhnika i kiravanne, 12:3 (2022), 151–161
[18] T. T. Tu, AYu. Kharin, “Sequential probability ratio test for many simple hypotheses on parameters of time series with trend”, Journal of the Belarusian State University. Mathematics and Informatics, 1 (2019), 35–45 | DOI | MR
[19] T. V. Rusilko, “Application of queueing network models in insurance”, Izvestiya of Saratov University. New series. Series. Mathematics. Mechanics. Informatics, 22:3 (2022), 315–321 | DOI | MR | Zbl
[20] M. A. Matalytski, “Forecasting anticipated incomes in the Markov networks with positive and negative customers”, Automation and Remote Control, 78:5 (2017), 815–825 | DOI | MR | Zbl