On an open problem in the theory of modular subgroups
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 28-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. Then a subgroup $A$ of group $G$ is said to be modular in $G$ if $(i) \langle X,A\cap Z\rangle=\langle X,A\rangle\cap Z$ for all $X\leq G, Z\leq G$ such that $X\leq Z$, and $(ii)\langle A,Y\cap Z\rangle=\langle A,Y\rangle\cap Z$ for all $Y\leq G, Z\leq G$ such that $A\leq Z$. We obtain a description of finite groups in which modularity is a transitive relation, that is, if $A$ is a modular subgroup of $K$ and $K$ is a modular subgroup of $G$, then $A$ is a modular subgroup of $G$. The result obtained is a solution to one of the old problems in the theory of modular subgroups, which goes back to the works of A. Frigerio (1974), I. Zimmermann (1989).
Keywords: finite group; modular subgroup; submodular subgroup; $M$-group; Robinson complex.
@article{BGUMI_2023_2_a2,
     author = {L. Aming-Ming and G. Wenbin and I. N. Safonova and A. N. Skiba},
     title = {On an open problem in the theory of modular subgroups},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {28--34},
     publisher = {mathdoc},
     volume = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a2/}
}
TY  - JOUR
AU  - L. Aming-Ming
AU  - G. Wenbin
AU  - I. N. Safonova
AU  - A. N. Skiba
TI  - On an open problem in the theory of modular subgroups
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 28
EP  - 34
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a2/
LA  - en
ID  - BGUMI_2023_2_a2
ER  - 
%0 Journal Article
%A L. Aming-Ming
%A G. Wenbin
%A I. N. Safonova
%A A. N. Skiba
%T On an open problem in the theory of modular subgroups
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 28-34
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a2/
%G en
%F BGUMI_2023_2_a2
L. Aming-Ming; G. Wenbin; I. N. Safonova; A. N. Skiba. On an open problem in the theory of modular subgroups. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 28-34. http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a2/

[1] R. Schmidt, Subgroup lattices of groups, de Gruyter expositions of mathematics, 14, Walter de Gruyter, Berlin, 1994, 572 pp. | DOI | MR | Zbl

[2] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, de Gruyter expositions in mathematics, 53, Walter de Gruyter, Berlin, 2010, 334 pp. | DOI | MR | Zbl

[3] A. Ballester-Bolinches, J. C. Beidleman, H. Heineken, “Groups in which Sylow subgroups and subnormal subgroups permute”, Illinois Journal of Mathematics, 47:1–2 (2003), 63–69 | DOI | MR | Zbl

[4] O. Ore, “Contributions to the theory of groups of finite order”, Duke Mathematical Journal, 5:2 (1939), 431–460 | DOI | MR | Zbl

[5] N. Ito, J. Szep, “Uber die Quasinormalteiler von endlichen Gruppen”, Acta Scientiarum Mathematicarum, 23:1–2 (1962), 168–170 | MR | Zbl

[6] R. Maier, P. Schmid, “The embedding of quasinormal subgroups in finite groups”, Mathematische Zeitschrift, 131:3 (1973), 269–272 | DOI | MR | Zbl

[7] J. G. Thompson, “An example of core-free quasinormal subgroups of p-groups”, Mathematische Zeitschrift, 96:3 (1967), 226–227 | DOI | MR | Zbl

[8] W. Gaschutz, “Gruppen, in denen das Normalteilersein transitivi st”, Journal fur die reine und angewandte Mathematik, 198 (1957), 87–92 | DOI | MR | Zbl

[9] DJS. Robinson, “The structure of finite groups in which permutability is a transitive relation”, Journal of the Australian Mathematical Society, 70:2 (2001), 143–160 | DOI | MR

[10] A. Frigerio, “Gruppi finiti nei quali e transitivo l’essere sottogruppo modulare”, Istituto Veneto di Scienze, Lettere ed Arti. Atti. Classe di scienze matematiche e naturali, 132, Istituto Veneto di Scienze, Lettere ed Arti, Venezia, 1974, 185–190 | MR | Zbl

[11] I. Zimmermann, “Submodular subgroups of finite groups”, Mathematische Zeitschrift, 202:4 (1989), 545–557 | DOI | MR | Zbl

[12] B. Huppert, Endliche Gruppen I, Grundlehren der mathematischen Wissenschaften, 134, Springer-Verlag, Berlin, 1967, 796 pp. | DOI | MR | Zbl

[13] A. N. Skiba, “On some classes of sublattices of the subgroup lattice”, Journal of the Belarusian State University. Mathematics and Informatics, 3 (2019), 35–47 | DOI | MR | Zbl