On an open problem in the theory of modular subgroups
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 28-34

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. Then a subgroup $A$ of group $G$ is said to be modular in $G$ if $(i) \langle X,A\cap Z\rangle=\langle X,A\rangle\cap Z$ for all $X\leq G, Z\leq G$ such that $X\leq Z$, and $(ii)\langle A,Y\cap Z\rangle=\langle A,Y\rangle\cap Z$ for all $Y\leq G, Z\leq G$ such that $A\leq Z$. We obtain a description of finite groups in which modularity is a transitive relation, that is, if $A$ is a modular subgroup of $K$ and $K$ is a modular subgroup of $G$, then $A$ is a modular subgroup of $G$. The result obtained is a solution to one of the old problems in the theory of modular subgroups, which goes back to the works of A. Frigerio (1974), I. Zimmermann (1989).
Keywords: finite group; modular subgroup; submodular subgroup; $M$-group; Robinson complex.
@article{BGUMI_2023_2_a2,
     author = {L. Aming-Ming and G. Wenbin and I. N. Safonova and A. N. Skiba},
     title = {On an open problem in the theory of modular subgroups},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {28--34},
     publisher = {mathdoc},
     volume = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a2/}
}
TY  - JOUR
AU  - L. Aming-Ming
AU  - G. Wenbin
AU  - I. N. Safonova
AU  - A. N. Skiba
TI  - On an open problem in the theory of modular subgroups
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 28
EP  - 34
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a2/
LA  - en
ID  - BGUMI_2023_2_a2
ER  - 
%0 Journal Article
%A L. Aming-Ming
%A G. Wenbin
%A I. N. Safonova
%A A. N. Skiba
%T On an open problem in the theory of modular subgroups
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 28-34
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a2/
%G en
%F BGUMI_2023_2_a2
L. Aming-Ming; G. Wenbin; I. N. Safonova; A. N. Skiba. On an open problem in the theory of modular subgroups. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 28-34. http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a2/