Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2023_2_a2, author = {L. Aming-Ming and G. Wenbin and I. N. Safonova and A. N. Skiba}, title = {On an open problem in the theory of modular subgroups}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {28--34}, publisher = {mathdoc}, volume = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a2/} }
TY - JOUR AU - L. Aming-Ming AU - G. Wenbin AU - I. N. Safonova AU - A. N. Skiba TI - On an open problem in the theory of modular subgroups JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2023 SP - 28 EP - 34 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a2/ LA - en ID - BGUMI_2023_2_a2 ER -
%0 Journal Article %A L. Aming-Ming %A G. Wenbin %A I. N. Safonova %A A. N. Skiba %T On an open problem in the theory of modular subgroups %J Journal of the Belarusian State University. Mathematics and Informatics %D 2023 %P 28-34 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a2/ %G en %F BGUMI_2023_2_a2
L. Aming-Ming; G. Wenbin; I. N. Safonova; A. N. Skiba. On an open problem in the theory of modular subgroups. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 28-34. http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a2/
[1] R. Schmidt, Subgroup lattices of groups, de Gruyter expositions of mathematics, 14, Walter de Gruyter, Berlin, 1994, 572 pp. | DOI | MR | Zbl
[2] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, de Gruyter expositions in mathematics, 53, Walter de Gruyter, Berlin, 2010, 334 pp. | DOI | MR | Zbl
[3] A. Ballester-Bolinches, J. C. Beidleman, H. Heineken, “Groups in which Sylow subgroups and subnormal subgroups permute”, Illinois Journal of Mathematics, 47:1–2 (2003), 63–69 | DOI | MR | Zbl
[4] O. Ore, “Contributions to the theory of groups of finite order”, Duke Mathematical Journal, 5:2 (1939), 431–460 | DOI | MR | Zbl
[5] N. Ito, J. Szep, “Uber die Quasinormalteiler von endlichen Gruppen”, Acta Scientiarum Mathematicarum, 23:1–2 (1962), 168–170 | MR | Zbl
[6] R. Maier, P. Schmid, “The embedding of quasinormal subgroups in finite groups”, Mathematische Zeitschrift, 131:3 (1973), 269–272 | DOI | MR | Zbl
[7] J. G. Thompson, “An example of core-free quasinormal subgroups of p-groups”, Mathematische Zeitschrift, 96:3 (1967), 226–227 | DOI | MR | Zbl
[8] W. Gaschutz, “Gruppen, in denen das Normalteilersein transitivi st”, Journal fur die reine und angewandte Mathematik, 198 (1957), 87–92 | DOI | MR | Zbl
[9] DJS. Robinson, “The structure of finite groups in which permutability is a transitive relation”, Journal of the Australian Mathematical Society, 70:2 (2001), 143–160 | DOI | MR
[10] A. Frigerio, “Gruppi finiti nei quali e transitivo l’essere sottogruppo modulare”, Istituto Veneto di Scienze, Lettere ed Arti. Atti. Classe di scienze matematiche e naturali, 132, Istituto Veneto di Scienze, Lettere ed Arti, Venezia, 1974, 185–190 | MR | Zbl
[11] I. Zimmermann, “Submodular subgroups of finite groups”, Mathematische Zeitschrift, 202:4 (1989), 545–557 | DOI | MR | Zbl
[12] B. Huppert, Endliche Gruppen I, Grundlehren der mathematischen Wissenschaften, 134, Springer-Verlag, Berlin, 1967, 796 pp. | DOI | MR | Zbl
[13] A. N. Skiba, “On some classes of sublattices of the subgroup lattice”, Journal of the Belarusian State University. Mathematics and Informatics, 3 (2019), 35–47 | DOI | MR | Zbl