Initial boundary value problem with nonlocal boundary condition for a nonlinear parabolic equation with memory
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 18-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear parabolic equation with memory $u_{t}=\Delta u+au^{p}\int\limits_0^t u^{q}(x,\tau)\mathrm{d}\tau-bu^{m}$ for $(x,t)\in \Omega\times (0,+\infty)$ under nonlinear nonlocal boundary condition $\left.\frac{\partial u(x,t)}{\partial v}\right|_{\partial\Omega\times (0,+\infty)}= \int\limits_\Omega k(x,y,t)u^{l}(y,t)\mathrm{d}y$ and initial data $u(x,0)=u_{0}(x), x\in\Omega$,where $a,b,q,m,l$ - are positive constants; $p\geq 0$; $\Omega$ - is a bounded domain in $\mathbb{R}^{n}$ with smooth boundary $\partial\Omega$; $v$ - is unit outward normal on $\partial\Omega$. Nonnegative continuous function $k(x,y,t)$ is defined for $x\in \partial\Omega, y\in\bar{\Omega}, t\geq 0$, nonnegative function $u_{0}(x)\in C^{1}(\bar\Omega)$, while it satisfies the condition $\frac{\partial u_{0}(x)}{\partial v}=\int\limits_\Omega k(x,y,0)u_{0}^{l}(y)\mathrm{d} y $ for $x\in\partial\Omega$. In this paper we study classical solutions. We establish the existence of a local maximal solution of the original problem. We introduce definitions of a supersolution and a subsolution. It is shown that under some conditions a supersolution is not less than a subsolution. We find conditions for the positiveness of solutions. As a consequence of the positiveness of solutions and the comparison principle of solutions, we prove the uniqueness theorem.
Keywords: nonlinear parabolic equation; nonlocal boundary condition; existence of a solution; comparison principle.
@article{BGUMI_2023_2_a1,
     author = {A. Gladkov},
     title = {Initial boundary value problem with nonlocal boundary condition for a nonlinear parabolic equation with memory},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {18--27},
     publisher = {mathdoc},
     volume = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a1/}
}
TY  - JOUR
AU  - A. Gladkov
TI  - Initial boundary value problem with nonlocal boundary condition for a nonlinear parabolic equation with memory
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 18
EP  - 27
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a1/
LA  - en
ID  - BGUMI_2023_2_a1
ER  - 
%0 Journal Article
%A A. Gladkov
%T Initial boundary value problem with nonlocal boundary condition for a nonlinear parabolic equation with memory
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 18-27
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a1/
%G en
%F BGUMI_2023_2_a1
A. Gladkov. Initial boundary value problem with nonlocal boundary condition for a nonlinear parabolic equation with memory. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 18-27. http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a1/