On the existence of trigonometric Hermite – Jacobi approximations and non-linear Hermite – Chebyshev approximations
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 6-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, analogues of algebraic Hermite – Padé approximations are defined, being trigonometric Hermite – Padé approximations and Hermite – Jacobi approximations. Examples of functions are represented for which trigonometric Hermite – Jacobi approximations exist but are not the same as trigonometric Hermite – Padé approximations. Similar examples are made for linear and non-linear Hermite – Chebyshev approximations, which are multiple analogues of linear and non-linear Padé – Chebyshev approximations. Each type of examples follows from the well-known representations for the numerator and denominator of fractions, introduced by C. Hermite when proving the transcendence of number $e$.
Keywords: trigonometric series; Fourier sums; trigonometric Padé approximations; Hermite – Padé polynomials; Padé – Chebyshev approximations.
@article{BGUMI_2023_2_a0,
     author = {A. P. Starovoitov and E. P. Kechko and T. M. Osnath},
     title = {On the existence of trigonometric {Hermite} {\textendash} {Jacobi} approximations and non-linear {Hermite} {\textendash} {Chebyshev} approximations},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {6--17},
     publisher = {mathdoc},
     volume = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a0/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - E. P. Kechko
AU  - T. M. Osnath
TI  - On the existence of trigonometric Hermite – Jacobi approximations and non-linear Hermite – Chebyshev approximations
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 6
EP  - 17
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a0/
LA  - ru
ID  - BGUMI_2023_2_a0
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A E. P. Kechko
%A T. M. Osnath
%T On the existence of trigonometric Hermite – Jacobi approximations and non-linear Hermite – Chebyshev approximations
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 6-17
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a0/
%G ru
%F BGUMI_2023_2_a0
A. P. Starovoitov; E. P. Kechko; T. M. Osnath. On the existence of trigonometric Hermite – Jacobi approximations and non-linear Hermite – Chebyshev approximations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 6-17. http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a0/

[1] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, Moskva, 1988, 256 pp. | MR

[2] D. Beiker, P. Greivs-Morris, Approksimatsii Pade, v. 1, Osnovy teorii, Mir, Moskva, 1986; т. 2, Обобщения и приложения

[3] G. Frobenius, “Ueber Relationen zwischen den Naherungsbruchen von Potenzreihen”, Journal fur die reine und angewandte Mathematik, 90 (1881), 1–17 | DOI | MR

[4] CGJ. Jacobi, “Uber die Darstellung einer Reihe gegebner Werthe durch eine gebrochne rationale Function”, Journal fur die reine und angewandte Mathematik, 30 (1846), 127–156 | DOI | MR

[5] M. Hermite, “Sur la fonction exponentielle”, Comptes Rendus de l’Academie des Sciences, 77 (1873), 18–24, 74–79, 226–233, 285–293

[6] A. P. Starovoitov, N. V. Ryabchenko, “O determinantnykh predstavleniyakh mnogochlenov Ermita – Pade”, Trudy Moskovskogo matematicheskogo obschestva, 83, no. 1, 2022, 17–36

[7] Yu. A. Labych, A. P. Starovoitov, “Trigonometricheskie approksimatsii Pade funktsii s regulyarno ubyvayuschimi koeffitsientami Fure”, Matematicheskii sbornik, 200:7 (2009), 107–130 | DOI | MR | Zbl

[8] S. P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, Uspekhi matematicheskikh nauk, 57:1 (2002), 45–142 | DOI | Zbl

[9] S. P. Suetin, “O suschestvovanii nelineinykh approksimatsii Pade – Chebysheva dlya analiticheskikh funktsii”, Matematicheskie zametki, 86:2 (2009), 290–303 | DOI | Zbl

[10] V. Yu. Medvedeva, E. A. Rovba, “Ratsionalnaya interpolyatsiya funktsii |x| v step. alpha s uzlami Chebysheva – Markova pervogo roda”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2023), 6–19 | DOI