On the existence of trigonometric Hermite – Jacobi approximations and non-linear Hermite – Chebyshev approximations
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 6-17

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, analogues of algebraic Hermite – Padé approximations are defined, being trigonometric Hermite – Padé approximations and Hermite – Jacobi approximations. Examples of functions are represented for which trigonometric Hermite – Jacobi approximations exist but are not the same as trigonometric Hermite – Padé approximations. Similar examples are made for linear and non-linear Hermite – Chebyshev approximations, which are multiple analogues of linear and non-linear Padé – Chebyshev approximations. Each type of examples follows from the well-known representations for the numerator and denominator of fractions, introduced by C. Hermite when proving the transcendence of number $e$.
Keywords: trigonometric series; Fourier sums; trigonometric Padé approximations; Hermite – Padé polynomials; Padé – Chebyshev approximations.
@article{BGUMI_2023_2_a0,
     author = {A. P. Starovoitov and E. P. Kechko and T. M. Osnath},
     title = {On the existence of trigonometric {Hermite} {\textendash} {Jacobi} approximations and non-linear {Hermite} {\textendash} {Chebyshev} approximations},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {6--17},
     publisher = {mathdoc},
     volume = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a0/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - E. P. Kechko
AU  - T. M. Osnath
TI  - On the existence of trigonometric Hermite – Jacobi approximations and non-linear Hermite – Chebyshev approximations
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 6
EP  - 17
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a0/
LA  - ru
ID  - BGUMI_2023_2_a0
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A E. P. Kechko
%A T. M. Osnath
%T On the existence of trigonometric Hermite – Jacobi approximations and non-linear Hermite – Chebyshev approximations
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 6-17
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a0/
%G ru
%F BGUMI_2023_2_a0
A. P. Starovoitov; E. P. Kechko; T. M. Osnath. On the existence of trigonometric Hermite – Jacobi approximations and non-linear Hermite – Chebyshev approximations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 6-17. http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a0/