Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2023_2_a0, author = {A. P. Starovoitov and E. P. Kechko and T. M. Osnath}, title = {On the existence of trigonometric {Hermite} {\textendash} {Jacobi} approximations and non-linear {Hermite} {\textendash} {Chebyshev} approximations}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {6--17}, publisher = {mathdoc}, volume = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a0/} }
TY - JOUR AU - A. P. Starovoitov AU - E. P. Kechko AU - T. M. Osnath TI - On the existence of trigonometric Hermite – Jacobi approximations and non-linear Hermite – Chebyshev approximations JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2023 SP - 6 EP - 17 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a0/ LA - ru ID - BGUMI_2023_2_a0 ER -
%0 Journal Article %A A. P. Starovoitov %A E. P. Kechko %A T. M. Osnath %T On the existence of trigonometric Hermite – Jacobi approximations and non-linear Hermite – Chebyshev approximations %J Journal of the Belarusian State University. Mathematics and Informatics %D 2023 %P 6-17 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a0/ %G ru %F BGUMI_2023_2_a0
A. P. Starovoitov; E. P. Kechko; T. M. Osnath. On the existence of trigonometric Hermite – Jacobi approximations and non-linear Hermite – Chebyshev approximations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2023), pp. 6-17. http://geodesic.mathdoc.fr/item/BGUMI_2023_2_a0/
[1] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, Moskva, 1988, 256 pp. | MR
[2] D. Beiker, P. Greivs-Morris, Approksimatsii Pade, v. 1, Osnovy teorii, Mir, Moskva, 1986; т. 2, Обобщения и приложения
[3] G. Frobenius, “Ueber Relationen zwischen den Naherungsbruchen von Potenzreihen”, Journal fur die reine und angewandte Mathematik, 90 (1881), 1–17 | DOI | MR
[4] CGJ. Jacobi, “Uber die Darstellung einer Reihe gegebner Werthe durch eine gebrochne rationale Function”, Journal fur die reine und angewandte Mathematik, 30 (1846), 127–156 | DOI | MR
[5] M. Hermite, “Sur la fonction exponentielle”, Comptes Rendus de l’Academie des Sciences, 77 (1873), 18–24, 74–79, 226–233, 285–293
[6] A. P. Starovoitov, N. V. Ryabchenko, “O determinantnykh predstavleniyakh mnogochlenov Ermita – Pade”, Trudy Moskovskogo matematicheskogo obschestva, 83, no. 1, 2022, 17–36
[7] Yu. A. Labych, A. P. Starovoitov, “Trigonometricheskie approksimatsii Pade funktsii s regulyarno ubyvayuschimi koeffitsientami Fure”, Matematicheskii sbornik, 200:7 (2009), 107–130 | DOI | MR | Zbl
[8] S. P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, Uspekhi matematicheskikh nauk, 57:1 (2002), 45–142 | DOI | Zbl
[9] S. P. Suetin, “O suschestvovanii nelineinykh approksimatsii Pade – Chebysheva dlya analiticheskikh funktsii”, Matematicheskie zametki, 86:2 (2009), 290–303 | DOI | Zbl
[10] V. Yu. Medvedeva, E. A. Rovba, “Ratsionalnaya interpolyatsiya funktsii |x| v step. alpha s uzlami Chebysheva – Markova pervogo roda”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2023), 6–19 | DOI