Oscillations of a circular three-layer plate under external linear in time load
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2023), pp. 49-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of dynamic deformation of a circular three-layer plate with a step-variable thickness of the outer layers is considered. The plate deformation model is based on the zig-zag theory. The approach to the consideration of the problem relies on the method of decomposition of the plate geometry. According to this, we represent the equations of motion for each section of the plate with a constant thickness. The derivation of these equations predicated on Hamilton’s variational principle. A particular analytical solution is obtained for forced plate vibration induced by linear in time external action. The represented solution is based on a superposition of quasi-static and dynamic components of the displacement appearing in the plate during vibrations. To test the obtained solution, numerical studies were performed for various materials.
Keywords: dynamic deformation of a three-layer plate; quasi-static deformation of a three-layer plate; circular three-layer stepped plate.
@article{BGUMI_2023_1_a4,
     author = {D. V. Leonenko and M. V. Markova},
     title = {Oscillations of a circular three-layer plate under external linear in time load},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {49--63},
     publisher = {mathdoc},
     volume = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a4/}
}
TY  - JOUR
AU  - D. V. Leonenko
AU  - M. V. Markova
TI  - Oscillations of a circular three-layer plate under external linear in time load
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 49
EP  - 63
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a4/
LA  - ru
ID  - BGUMI_2023_1_a4
ER  - 
%0 Journal Article
%A D. V. Leonenko
%A M. V. Markova
%T Oscillations of a circular three-layer plate under external linear in time load
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 49-63
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a4/
%G ru
%F BGUMI_2023_1_a4
D. V. Leonenko; M. V. Markova. Oscillations of a circular three-layer plate under external linear in time load. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2023), pp. 49-63. http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a4/

[1] E. I. Grigolyuk, F. A. Kogan, “Sovremennoe sostoyanie teorii mnogosloinykh obolochek”, Prikladnaya mekhanika, 8(6) (1972), 3–17

[2] E. Carrera, “Historical review of zig-zag theories for multilayered plates and shells”, Applied Mechanics Reviews, 56(3) (2003), 287–308 | DOI | MR

[3] E. Carrera, “An assessment of mixed and classical theories on global and local response of multilayered, orthotropic plates”, Composite Structures, 50(2) (2000), 183–198 | DOI

[4] Y. Xiang, L. Zhang, “Free vibration analysis of stepped circular Mindlin plates”, Journal of Sound and Vibration, 280(3–5) (2005), 633–655 | DOI

[5] U. S. Gupta, R. Lal, S. Sharma, “Vibration of non-homogeneous circular Mindlin plates with variable thickness”, Journal of Sound and Vibration, 302(1–2) (2007), 1–17 | DOI

[6] C. Gao, F. Pang, H. Li, D. Jia, Y. Tang, “Steady and transient vibration analysis of uniform and stepped annular/circular plates based on FSDT”, Acta Mechanica, 233(3) (2022), 1061–1082 | DOI | MR | Zbl

[7] Q. Hao, Z. Chen, W. Zhai, “Free transverse vibration of circular plate of stepped thickness with general boundary conditions by an improved Fourier – Ritz method”, Shock and Vibration, 2022 | DOI

[8] LTT. Hang, C. M. Wang, T. Y. Wu, “Exact vibration results for stepped circular plates with free edges”, International Journal of Mechanical Sciences, 47(8) (2005), 1224–1248 | DOI

[9] W. H. Duan, C. M. Wang, C. Y. Wang, “Modification of fundamental vibration modes of circular plates with free edges”, Journal of Sound and Vibration, 317(3–5) (2008), 709–715 | DOI

[10] G. Duan, X. Wang, C. Jin, “Free vibration analysis of circular thin plates with stepped thickness by the DSC element method”, Thin-Walled Structures, 85 (2014), 25–33 | DOI | MR

[11] V. V. Korolevich, “Pole napryazhenii vraschayuschegosya anizotropnogo diska peremennoi tolschiny, nagruzhennogo sosredotochennymi silami po vneshnemu konturu”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2019), 40–51 | DOI | MR | Zbl

[12] V. V. Korolevich, D. G. Medvedev, “Vliyanie protyazhennosti istochnikov tepla na vneshnei granitse na raspredelenie temperatury v profilirovannykh polyarno-ortotropnykh koltsevykh plastinakh s uchetom teploobmena s okruzhayuschei sredoi”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2020), 86–91 | DOI | MR

[13] E. I. Starovoitov, D. V. Tarlakovskii, “Deformirovanie trekhsloinoi ortotropnoi plastiny stupenchato-peremennoi tolschiny”, Fundamentalnye i prikladnye problemy tekhniki i tekhnologii, 2 (2014), 38–43

[14] C. H. Nguyen, R. R. Butukuri, K. Chandrashekhara, V. Birman, “Dynamics and buckling of sandwich panels with stepped facings”, International Journal of Structural Stability and Dynamics, 11(4) (2011), 697–716 | DOI | MR

[15] C. H. Nguyen, K. Chandrashekhara, V. Birman, “Enhanced static response of sandwich panels with honeycomb cores through the use of stepped facings”, Journal of Sandwich Structures and Materials, 13(2) (2011), 237–260 | DOI

[16] E. I. Starovoitov, A. A. Poddubnyi, “Izgib trekhsloinogo sterzhnya so stupenchato-peremennoi granitsei, chastichno opertogo na uprugoe osnovanie”, Mekhanika mashin, mekhanizmov i materialov, 1 (2011), 51–55

[17] D. V. Leonenko, “Poperechnyi izgib krugovoi sendvich-plastiny stupenchatoi tolschiny”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F Skoriny, 6 (2020), 151–155

[18] D. V. Leonenko, “Lokalnoe nagruzhenie stupenchatoi krugovoi sendvich-plastiny”, Mekhanika. Issledovaniya i innovatsii = Mechanics. Researches and Innovations, 14, Gomel, 2021, 126–130

[19] D. V. Leonenko, “Uprugii izgib krugovoi trekhsloinoi plastiny stupenchato-peremennoi tolschiny”, Mekhanika mashin, mekhanizmov i materialov, 1 (2021), 25–29 | DOI

[20] V. S. Parfenova, “Deformirovanie krugloi uprugoi trekhsloinoi plastiny so stupenchato-peremennoi granitsei”, Mekhanika. Issledovaniya i innovatsii = Mechanics. Researches and Innovations, 10, Gomel, 2017, 157–163

[21] V. A. Zorich, Matematicheskii analiz, v. 1, 6-e izdanie, Izdatelstvo MTsNMO, Moskva, 2012, XVIII+702 pp. | MR

[22] O. A. Bauchau, J. I. Craig, “Structural analysis. With applications to aerospace structures”, chap. 16, Solid mechanics and its applications, 163, Springer, Dordrecht, 2009, 819–914 | DOI

[23] S. P. Timoshenko, “On the correction for shear of the differential equation for transverse vibrations of prismatic bars”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Series 6, 41(245) (1921), 744–746 | DOI

[24] D. V. Leonenko, M. V. Markova, “Kolebaniya krugovoi trekhsloinoi stupenchatoi plastiny pri udarnom periodicheskom vozdeistvii”, Mekhanika mashin, mekhanizmov i materialov, 3 (2022), 68–76 | DOI

[25] V. Novatskii, Teoriya uprugosti, Mir, Moskva, 1975, 872 pp.

[26] M. V. Markova, D. V. Leonenko, “Postanovka nachalno-kraevoi zadachi ob osesimmetrichnykh kolebaniyakh krugovoi trekhsloinoi plastiny peremennoi tolschiny”, Teoreticheskaya i prikladnaya mekhanika, 36, BNTU, Minsk, 2022, 3–10

[27] E. I. Starovoitov, A. V. Nesterovich, “Neosesimmetrichnoe nagruzhenie uprugoplasticheskoi trekhsloinoi plastiny v svoei ploskosti”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2022), 57–69 | DOI

[28] K. N. Tong, Teoriya mekhanicheskikh kolebanii, Mashgiz, Moskva, 1963, 351 pp.

[29] I. G. Aramanovich, V. I. Levin, Uravneniya matematicheskoi fiziki, Izbrannye glavy vysshei matematiki dlya inzhenerov i studentov vtuzov, 2-e izdanie, Nauka, Moskva, 1969, 288 pp.

[30] V. Z. Vlasov, N. N. Leontev, Balki, plity i obolochki na uprugom osnovanii, Fizmatgiz, Moskva, 1960, 491 pp.

[31] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, 2-e izdanie, Nauka, Moskva, 1974, 296 pp. | MR

[32] G. N. Vatson, Teoriya besselevykh funktsii, v. 1, Izdatelstvo inostrannoi literatury, Moskva, 1949, 799 pp.

[33] Yu. M. Pleskachevskii, E. I. Starovoitov, D. V. Leonenko, Mekhanika trekhsloinykh sterzhnei i plastin, svyazannykh s uprugim osnovaniem, Fizmatlit, Moskva, 2011, 560 pp.

[34] SP 5.04.01-2021. Stalnye konstruktsii, Ministerstvo arkhitektury i stroitelstva Respubliki Belarus, Minsk, 2021, 147 pp.

[35] A. M. Ivanov, K. Ya. Algazinov, D. V. Martinets, V. I. Martemyanov, Stroitelnye konstruktsii s primeneniem plastmass. Primery proektirovaniya i rascheta, Vysshaya shkola, Moskva, 1968, 220 pp.