Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2023_1_a4, author = {D. V. Leonenko and M. V. Markova}, title = {Oscillations of a circular three-layer plate under external linear in time load}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {49--63}, publisher = {mathdoc}, volume = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a4/} }
TY - JOUR AU - D. V. Leonenko AU - M. V. Markova TI - Oscillations of a circular three-layer plate under external linear in time load JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2023 SP - 49 EP - 63 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a4/ LA - ru ID - BGUMI_2023_1_a4 ER -
%0 Journal Article %A D. V. Leonenko %A M. V. Markova %T Oscillations of a circular three-layer plate under external linear in time load %J Journal of the Belarusian State University. Mathematics and Informatics %D 2023 %P 49-63 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a4/ %G ru %F BGUMI_2023_1_a4
D. V. Leonenko; M. V. Markova. Oscillations of a circular three-layer plate under external linear in time load. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2023), pp. 49-63. http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a4/
[1] E. I. Grigolyuk, F. A. Kogan, “Sovremennoe sostoyanie teorii mnogosloinykh obolochek”, Prikladnaya mekhanika, 8(6) (1972), 3–17
[2] E. Carrera, “Historical review of zig-zag theories for multilayered plates and shells”, Applied Mechanics Reviews, 56(3) (2003), 287–308 | DOI | MR
[3] E. Carrera, “An assessment of mixed and classical theories on global and local response of multilayered, orthotropic plates”, Composite Structures, 50(2) (2000), 183–198 | DOI
[4] Y. Xiang, L. Zhang, “Free vibration analysis of stepped circular Mindlin plates”, Journal of Sound and Vibration, 280(3–5) (2005), 633–655 | DOI
[5] U. S. Gupta, R. Lal, S. Sharma, “Vibration of non-homogeneous circular Mindlin plates with variable thickness”, Journal of Sound and Vibration, 302(1–2) (2007), 1–17 | DOI
[6] C. Gao, F. Pang, H. Li, D. Jia, Y. Tang, “Steady and transient vibration analysis of uniform and stepped annular/circular plates based on FSDT”, Acta Mechanica, 233(3) (2022), 1061–1082 | DOI | MR | Zbl
[7] Q. Hao, Z. Chen, W. Zhai, “Free transverse vibration of circular plate of stepped thickness with general boundary conditions by an improved Fourier – Ritz method”, Shock and Vibration, 2022 | DOI
[8] LTT. Hang, C. M. Wang, T. Y. Wu, “Exact vibration results for stepped circular plates with free edges”, International Journal of Mechanical Sciences, 47(8) (2005), 1224–1248 | DOI
[9] W. H. Duan, C. M. Wang, C. Y. Wang, “Modification of fundamental vibration modes of circular plates with free edges”, Journal of Sound and Vibration, 317(3–5) (2008), 709–715 | DOI
[10] G. Duan, X. Wang, C. Jin, “Free vibration analysis of circular thin plates with stepped thickness by the DSC element method”, Thin-Walled Structures, 85 (2014), 25–33 | DOI | MR
[11] V. V. Korolevich, “Pole napryazhenii vraschayuschegosya anizotropnogo diska peremennoi tolschiny, nagruzhennogo sosredotochennymi silami po vneshnemu konturu”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2019), 40–51 | DOI | MR | Zbl
[12] V. V. Korolevich, D. G. Medvedev, “Vliyanie protyazhennosti istochnikov tepla na vneshnei granitse na raspredelenie temperatury v profilirovannykh polyarno-ortotropnykh koltsevykh plastinakh s uchetom teploobmena s okruzhayuschei sredoi”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2020), 86–91 | DOI | MR
[13] E. I. Starovoitov, D. V. Tarlakovskii, “Deformirovanie trekhsloinoi ortotropnoi plastiny stupenchato-peremennoi tolschiny”, Fundamentalnye i prikladnye problemy tekhniki i tekhnologii, 2 (2014), 38–43
[14] C. H. Nguyen, R. R. Butukuri, K. Chandrashekhara, V. Birman, “Dynamics and buckling of sandwich panels with stepped facings”, International Journal of Structural Stability and Dynamics, 11(4) (2011), 697–716 | DOI | MR
[15] C. H. Nguyen, K. Chandrashekhara, V. Birman, “Enhanced static response of sandwich panels with honeycomb cores through the use of stepped facings”, Journal of Sandwich Structures and Materials, 13(2) (2011), 237–260 | DOI
[16] E. I. Starovoitov, A. A. Poddubnyi, “Izgib trekhsloinogo sterzhnya so stupenchato-peremennoi granitsei, chastichno opertogo na uprugoe osnovanie”, Mekhanika mashin, mekhanizmov i materialov, 1 (2011), 51–55
[17] D. V. Leonenko, “Poperechnyi izgib krugovoi sendvich-plastiny stupenchatoi tolschiny”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F Skoriny, 6 (2020), 151–155
[18] D. V. Leonenko, “Lokalnoe nagruzhenie stupenchatoi krugovoi sendvich-plastiny”, Mekhanika. Issledovaniya i innovatsii = Mechanics. Researches and Innovations, 14, Gomel, 2021, 126–130
[19] D. V. Leonenko, “Uprugii izgib krugovoi trekhsloinoi plastiny stupenchato-peremennoi tolschiny”, Mekhanika mashin, mekhanizmov i materialov, 1 (2021), 25–29 | DOI
[20] V. S. Parfenova, “Deformirovanie krugloi uprugoi trekhsloinoi plastiny so stupenchato-peremennoi granitsei”, Mekhanika. Issledovaniya i innovatsii = Mechanics. Researches and Innovations, 10, Gomel, 2017, 157–163
[21] V. A. Zorich, Matematicheskii analiz, v. 1, 6-e izdanie, Izdatelstvo MTsNMO, Moskva, 2012, XVIII+702 pp. | MR
[22] O. A. Bauchau, J. I. Craig, “Structural analysis. With applications to aerospace structures”, chap. 16, Solid mechanics and its applications, 163, Springer, Dordrecht, 2009, 819–914 | DOI
[23] S. P. Timoshenko, “On the correction for shear of the differential equation for transverse vibrations of prismatic bars”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Series 6, 41(245) (1921), 744–746 | DOI
[24] D. V. Leonenko, M. V. Markova, “Kolebaniya krugovoi trekhsloinoi stupenchatoi plastiny pri udarnom periodicheskom vozdeistvii”, Mekhanika mashin, mekhanizmov i materialov, 3 (2022), 68–76 | DOI
[25] V. Novatskii, Teoriya uprugosti, Mir, Moskva, 1975, 872 pp.
[26] M. V. Markova, D. V. Leonenko, “Postanovka nachalno-kraevoi zadachi ob osesimmetrichnykh kolebaniyakh krugovoi trekhsloinoi plastiny peremennoi tolschiny”, Teoreticheskaya i prikladnaya mekhanika, 36, BNTU, Minsk, 2022, 3–10
[27] E. I. Starovoitov, A. V. Nesterovich, “Neosesimmetrichnoe nagruzhenie uprugoplasticheskoi trekhsloinoi plastiny v svoei ploskosti”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2022), 57–69 | DOI
[28] K. N. Tong, Teoriya mekhanicheskikh kolebanii, Mashgiz, Moskva, 1963, 351 pp.
[29] I. G. Aramanovich, V. I. Levin, Uravneniya matematicheskoi fiziki, Izbrannye glavy vysshei matematiki dlya inzhenerov i studentov vtuzov, 2-e izdanie, Nauka, Moskva, 1969, 288 pp.
[30] V. Z. Vlasov, N. N. Leontev, Balki, plity i obolochki na uprugom osnovanii, Fizmatgiz, Moskva, 1960, 491 pp.
[31] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, 2-e izdanie, Nauka, Moskva, 1974, 296 pp. | MR
[32] G. N. Vatson, Teoriya besselevykh funktsii, v. 1, Izdatelstvo inostrannoi literatury, Moskva, 1949, 799 pp.
[33] Yu. M. Pleskachevskii, E. I. Starovoitov, D. V. Leonenko, Mekhanika trekhsloinykh sterzhnei i plastin, svyazannykh s uprugim osnovaniem, Fizmatlit, Moskva, 2011, 560 pp.
[34] SP 5.04.01-2021. Stalnye konstruktsii, Ministerstvo arkhitektury i stroitelstva Respubliki Belarus, Minsk, 2021, 147 pp.
[35] A. M. Ivanov, K. Ya. Algazinov, D. V. Martinets, V. I. Martemyanov, Stroitelnye konstruktsii s primeneniem plastmass. Primery proektirovaniya i rascheta, Vysshaya shkola, Moskva, 1968, 220 pp.