Rational interpolation of a function $|x|^{\alpha}$ with Chebyshev – Markov nodes of the first kind
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2023), pp. 6-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the approximations of the function $|x|^{\alpha}, ~\alpha > 0$, by interpolation rational Lagrange functions on the interval $[-1, 1]$. Zeros of the rational Chebyshev – Markov function of the first kind are chosen as interpolation nodes. An integral representation of the interpolation remainder and an upper estimation for the considered uniform approximations are obtained. The polynomial and general rational cases are studied in detail. In the polynomial case, an asymptotic estimate for uniform approximations is found. When approximating by interpolation rational Lagrange functions with Chebyshev – Markov nodes of the first kind, the upper and lower estimations are found. These estimations are close to that of the best uniform approximations of the function under consideration on the interval $[-1, 1]$.
Keywords: rational Chebyshev – Markov fraction; rational interpolation; function with power singularity.
@article{BGUMI_2023_1_a0,
     author = {V. Yu. Medvedeva and Y. A. Rovba},
     title = {Rational interpolation of a function $|x|^{\alpha}$ with {Chebyshev} {\textendash} {Markov} nodes of the first kind},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {6--19},
     publisher = {mathdoc},
     volume = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a0/}
}
TY  - JOUR
AU  - V. Yu. Medvedeva
AU  - Y. A. Rovba
TI  - Rational interpolation of a function $|x|^{\alpha}$ with Chebyshev – Markov nodes of the first kind
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2023
SP  - 6
EP  - 19
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a0/
LA  - ru
ID  - BGUMI_2023_1_a0
ER  - 
%0 Journal Article
%A V. Yu. Medvedeva
%A Y. A. Rovba
%T Rational interpolation of a function $|x|^{\alpha}$ with Chebyshev – Markov nodes of the first kind
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2023
%P 6-19
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a0/
%G ru
%F BGUMI_2023_1_a0
V. Yu. Medvedeva; Y. A. Rovba. Rational interpolation of a function $|x|^{\alpha}$ with Chebyshev – Markov nodes of the first kind. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2023), pp. 6-19. http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a0/

[1] S. N. Bernshtein, “O nailuchshem priblizhenii |x| v step. p pri pomoschi mnogochlenov vesma vysokoi stepeni = Sur la meilleure approximation de |x| v step. p par des polynomes de degres tres eleves”, Izvestiya Akademii nauk SSSR. Otdelenie matematicheskikh i estestvennykh nauk, 2(2) (1938), 169–190

[2] S. M. Nikolskii, “O nailuchshem priblizhenii mnogochlenami v srednem funktsii |a – x| v step. s”, Izvestiya Akademii nauk SSSR. Seriya matematicheskaya, 11(2) (1947), 139–180

[3] R. A. Raitsin, “O nailuchshem srednekvadraticheskom priblizhenii mnogochlenami i tselymi funktsiyami konechnoi stepeni funktsii, imeyuschikh algebraicheskuyu osobuyu tochku”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 4 (1969), 59–61

[4] A. J. Carpenter, R. S. Varga, “Some numerical results on best uniform polynomial approximation of x v step. a on [0, 1]”, Methods of approximation theory in complex analysis and mathematical physics (Leningrad, Russia), Springer-Verlag, Berlin, 1993, 192–222 | DOI

[5] P. P. Petrushev, V. A. Popov, Rational approximation of real functions, Encyclopedia of mathematics and its applications, volume 28, Cambridge University Press, Cambridge, 1987, X+371 pp.

[6] G. Shtal, “Nailuchshie ravnomernye ratsionalnye approksimatsii |x| na [–1, 1]”, Matematicheskii sbornik, 183(8) (1992), 85–118

[7] H. Stahl, “Best uniform rational approximation of x v step. a on [0, 1]”, Bulletin of the American Mathematical Society, 28(1) (1993), 116–122 | DOI

[8] J-E. Andersson, “Rational approximation to functions like x v step. a in integral norms”, Analysis Mathematica, 14(1) (1988), 11–25 | DOI

[9] A. A. Pekarskii, “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7(2) (1995), 121–132

[10] R. A. Raitsin, “Asimptoticheskie svoistva ravnomernykh priblizhenii funktsii s algebraicheskimi osobennostyami chastichnymi summami ryada Fure – Chebysheva”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 3 (1980), 45–49

[11] M. I. Ganzburg, “The Bernstein constant and polynomial interpolation at the Chebyshev nodes”, Journal of Approximation Theory, 119(2) (2002), 193–213 | DOI

[12] M. Revers, “On the asymptotics of polynomial interpolation to |x| v step. a at the Chebyshev nodes”, Journal of Approximation Theory, 165 (2013), 70–82 | DOI

[13] E. A. Rovba, V. Yu. Medvedeva, “O ratsionalnoi interpolyatsii funktsii |x| v step. a po rasshirennoi sisteme uzlov Chebysheva – Markova”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 55(4) (2019), 391–405 | DOI

[14] V. N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, Izdatelstvo BGU, Minsk, 1979, 176 pp.

[15] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya. Tom 2, Lan, Sankt-Peterburg, 1997, 800 pp.

[16] A. A. Pekarskii, E. A. Rovba, “Ravnomernye priblizheniya funktsii Stiltesa posredstvom ortoproektsii na mnozhestvo ratsionalnykh funktsii”, Matematicheskie zametki, 65(3) (1999), 362–368

[17] E. V. Kovalevskaya, A. A. Pekarskii, “Postroenie ekstremalnykh proizvedenii Blyashke”, Vesnik Grodzenskaga dzyarzhaўnaga ўniversiteta imya Yanki Kupaly. Seryya 2, Matematyka. Fizika. Іnfarmatyka, vylichalnaya tekhnika i kiravanne, 7(1) (2017), 6–14