Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2023_1_a0, author = {V. Yu. Medvedeva and Y. A. Rovba}, title = {Rational interpolation of a function $|x|^{\alpha}$ with {Chebyshev} {\textendash} {Markov} nodes of the first kind}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {6--19}, publisher = {mathdoc}, volume = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a0/} }
TY - JOUR AU - V. Yu. Medvedeva AU - Y. A. Rovba TI - Rational interpolation of a function $|x|^{\alpha}$ with Chebyshev – Markov nodes of the first kind JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2023 SP - 6 EP - 19 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a0/ LA - ru ID - BGUMI_2023_1_a0 ER -
%0 Journal Article %A V. Yu. Medvedeva %A Y. A. Rovba %T Rational interpolation of a function $|x|^{\alpha}$ with Chebyshev – Markov nodes of the first kind %J Journal of the Belarusian State University. Mathematics and Informatics %D 2023 %P 6-19 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a0/ %G ru %F BGUMI_2023_1_a0
V. Yu. Medvedeva; Y. A. Rovba. Rational interpolation of a function $|x|^{\alpha}$ with Chebyshev – Markov nodes of the first kind. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2023), pp. 6-19. http://geodesic.mathdoc.fr/item/BGUMI_2023_1_a0/
[1] S. N. Bernshtein, “O nailuchshem priblizhenii |x| v step. p pri pomoschi mnogochlenov vesma vysokoi stepeni = Sur la meilleure approximation de |x| v step. p par des polynomes de degres tres eleves”, Izvestiya Akademii nauk SSSR. Otdelenie matematicheskikh i estestvennykh nauk, 2(2) (1938), 169–190
[2] S. M. Nikolskii, “O nailuchshem priblizhenii mnogochlenami v srednem funktsii |a – x| v step. s”, Izvestiya Akademii nauk SSSR. Seriya matematicheskaya, 11(2) (1947), 139–180
[3] R. A. Raitsin, “O nailuchshem srednekvadraticheskom priblizhenii mnogochlenami i tselymi funktsiyami konechnoi stepeni funktsii, imeyuschikh algebraicheskuyu osobuyu tochku”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 4 (1969), 59–61
[4] A. J. Carpenter, R. S. Varga, “Some numerical results on best uniform polynomial approximation of x v step. a on [0, 1]”, Methods of approximation theory in complex analysis and mathematical physics (Leningrad, Russia), Springer-Verlag, Berlin, 1993, 192–222 | DOI
[5] P. P. Petrushev, V. A. Popov, Rational approximation of real functions, Encyclopedia of mathematics and its applications, volume 28, Cambridge University Press, Cambridge, 1987, X+371 pp.
[6] G. Shtal, “Nailuchshie ravnomernye ratsionalnye approksimatsii |x| na [–1, 1]”, Matematicheskii sbornik, 183(8) (1992), 85–118
[7] H. Stahl, “Best uniform rational approximation of x v step. a on [0, 1]”, Bulletin of the American Mathematical Society, 28(1) (1993), 116–122 | DOI
[8] J-E. Andersson, “Rational approximation to functions like x v step. a in integral norms”, Analysis Mathematica, 14(1) (1988), 11–25 | DOI
[9] A. A. Pekarskii, “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7(2) (1995), 121–132
[10] R. A. Raitsin, “Asimptoticheskie svoistva ravnomernykh priblizhenii funktsii s algebraicheskimi osobennostyami chastichnymi summami ryada Fure – Chebysheva”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 3 (1980), 45–49
[11] M. I. Ganzburg, “The Bernstein constant and polynomial interpolation at the Chebyshev nodes”, Journal of Approximation Theory, 119(2) (2002), 193–213 | DOI
[12] M. Revers, “On the asymptotics of polynomial interpolation to |x| v step. a at the Chebyshev nodes”, Journal of Approximation Theory, 165 (2013), 70–82 | DOI
[13] E. A. Rovba, V. Yu. Medvedeva, “O ratsionalnoi interpolyatsii funktsii |x| v step. a po rasshirennoi sisteme uzlov Chebysheva – Markova”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 55(4) (2019), 391–405 | DOI
[14] V. N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, Izdatelstvo BGU, Minsk, 1979, 176 pp.
[15] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya. Tom 2, Lan, Sankt-Peterburg, 1997, 800 pp.
[16] A. A. Pekarskii, E. A. Rovba, “Ravnomernye priblizheniya funktsii Stiltesa posredstvom ortoproektsii na mnozhestvo ratsionalnykh funktsii”, Matematicheskie zametki, 65(3) (1999), 362–368
[17] E. V. Kovalevskaya, A. A. Pekarskii, “Postroenie ekstremalnykh proizvedenii Blyashke”, Vesnik Grodzenskaga dzyarzhaўnaga ўniversiteta imya Yanki Kupaly. Seryya 2, Matematyka. Fizika. Іnfarmatyka, vylichalnaya tekhnika i kiravanne, 7(1) (2017), 6–14