Pseudo-prolongations in the qualitative theory of dynamical systems
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2022), pp. 45-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the qualitative behaviour of the flow in a neighbourhood of closed invariant sets of dynamical systems. The properties of compactness, invariance, and connectivity of pseudo-prolongations are investigated. A rather deep analysis of the flow in the vicinity of a compact invariant set of asymptotically compact phase spaces is presented. The connection of pseudo-prolongation with the first positive prolongation of T. Ura and the set of weakly elliptic points is refined.
Keywords: dynamical system; closed set; attraction; prolongation.
@article{BGUMI_2022_3_a3,
     author = {B. S. Kalitin},
     title = {Pseudo-prolongations in the qualitative theory of dynamical systems},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {45--53},
     publisher = {mathdoc},
     volume = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a3/}
}
TY  - JOUR
AU  - B. S. Kalitin
TI  - Pseudo-prolongations in the qualitative theory of dynamical systems
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 45
EP  - 53
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a3/
LA  - ru
ID  - BGUMI_2022_3_a3
ER  - 
%0 Journal Article
%A B. S. Kalitin
%T Pseudo-prolongations in the qualitative theory of dynamical systems
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 45-53
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a3/
%G ru
%F BGUMI_2022_3_a3
B. S. Kalitin. Pseudo-prolongations in the qualitative theory of dynamical systems. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2022), pp. 45-53. http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a3/

[1] T. Ura, “Sur les courbes definies par les equations differentielles dans espace a m dimentions”, Ecole Normale Superieure. Serie 3, 70 (1953), 287–360 | DOI | MR

[2] T. Ura, “Sur les courant exterieur a une region invariante. prolongement d`une caracteristique et l`ordre de stabilite”, Funkcialaj Ekvacioj, 2 (1959), 143–190 | MR

[3] P. Seibert, “Prolongations and generalized Liapunov functions”, Techical Reports. RIAS, 61(7) (1961), 454–462 | MR

[4] P. Seibert, “Prolongations and generalized Liapunov functions”, Proceedings of the International Symposium on Non-Linear Oscillations (Kiyv, Ukraine), Izdatel’stvo Akademii Nauk SSSR, Kiyv, 1963, 332–341 | MR

[5] J. Auslander, P. Seibert, “Prolongations and stability in dynamical systems”, Annales de l’Institut Fourier, 14(2) (1964), 237–267 | DOI | MR

[6] A. Pelczar, “Semistability of motions and regular dependence of limit sets on points in general semi-systems”, Annales Polonici Mathematici, 42 (1983), 263–282 | DOI | MR

[7] A. Pelczar, “Prolongations and prolongational limit sets in generalized semi-systems on metric spaces”, Universitatis Iagellonicae Acta Mathematia, 31 (1994), 203–240 | MR

[8] N. N. Ladis, “Topologicheskaya ekvivalentnost nekotorykh differentsialnykh sistem”, Differentsialnye uravneniya, 8(7) (1972), 1116–1119 | MR

[9] L. E. Reizin, Funktsii Lyapunova i problemy razlicheniya, Zinatne, Riga, 1986, 192 pp. | MR

[10] A. N. Sharkovskii, “Strukturnaya teoriya differentsialnykh dinamicheskikh sistem i slabo nebluzhdayuschie tochki”, VII Internationale Konferenz uber nichtlineare Schwingungen (Berlin, Germany), Akademie-Verlag, Berlin, 1977, 193–200

[11] V. A. Dobrynskii, “Tipichnost dinamicheskikh sistem s ustoichivoi prolongatsiei”, Dinamicheskie sistemy i voprosy ustoichivosti reshenii differentsialnykh uravnenii, Izdatelstvo Instituta matematiki AN USSR, Kiev, 1973, 43–53

[12] O. Hajek, “Prolongation in topological dynamical”, Seminar on differential equations and dynamical systems, II, Springer, Berlin, 1970, 79–89 | DOI

[13] Sook. Jong, Kyu. Sung, Suh. Jong, “Limit sets and prolongations in topological dynamics”, Journal of Differential Equations, 64(3) (1986), 336–339 | DOI | MR

[14] B. S. Kalitine, “Pseudo-stabilite et classification des ensembles fermes invariants”, Prepublication USTHB, B.P. 9 Dar El-Beida (Alger), 9 (1983), 1–12

[15] B. S. Kalitin, “Psevdoustoichivost zamknutykh invariantnykh mnozhestv”, Differentsialnye uravneniya, 22(2) (1986), 187–193

[16] B. S. Kalitin, “Psevdoustoichivost i pervye prodolzheniya”, Differentsialnye uravneniya, 24(4) (1988), 571–574

[17] B. S. Kalitin, “Nepreryvnost psevdoprolongatsii”, Differentsialnye uravneniya, 25(12) (1989), 2187

[18] B. S. Kalitin, “Psevdoprolongatsiya”, Differentsialnye uravneniya, 32(8) (1996), 1043–1050

[19] B. S. Kalitine, “On the pseudo-stability of semidynamical systems”, Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika, 1 (2015), 79–84

[20] B. S. Kalitin, “O nekotorykh svoistvakh psevdoustoichivosti i psevdoprolongatsii”, Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika, 2 (2015), 77–83

[21] B. S. Kalitin, “O strukture okrestnosti slabo prityagivayuschikh kompaktnykh mnozhestv”, Differentsialnye uravneniya, 30(4) (1994), 565–574

[22] B. S. Kalitin, “Kachestvennaya kharakteristika traektorii v okrestnosti prityagivayuschego kompaktnogo mnozhestva”, Differentsialnye uravneniya, 34(7) (1998), 886–893

[23] B. S. Kalitin, Kachestvennaya teoriya ustoichivosti dvizheniya dinamicheskikh sistem, BGU, Minsk, 2002, 198 pp.

[24] B. S. Kalitin, Ustoichivost dinamicheskikh sistem (kachestvennaya teoriya), LAP Lambert Academic Publishing, Saarbrucken, 2012, 258 pp.

[25] O. Ladyzhenskaya, Attractors for semigroups and evolution equations, Cambridge University Press, Cambridge, 1991, 98 pp. | MR

[26] J. H. Arredondo, P. Seibert, “On a characterization of asymptotic stability”, Aportaciones Matematicas. Comunicationes, 29 (2001), 11–16 | MR

[27] B. S. Kalitine, “About asymptotic stability in semidynamical systems”, Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika, 1 (2016), 114–119

[28] B. S. Kalitin, “Neustoichivost zamknutykh invariantnykh mnozhestv poludinamicheskikh sistem. Metod znakopostoyannykh funktsii Lyapunova”, Matematicheskie zametki, 85(3) (2009), 382–394 | DOI

[29] B. S. Kalitin, “O svoistvakh okrestnosti attraktora dinamicheskoi sistemy”, Matematicheskie zametki, 109(5) (2021), 734–746 | DOI

[30] N. P. Bhatia, G. H. Szego, Stability theory of dynamical systems, Springer, Berlin, 1970, 225 pp. | MR

[31] S. H. Saperstone, Semidynamical systems in infinite dimentional space, Springer, Berlin, 1981, 474 pp. | MR