Pseudo-prolongations in the qualitative theory of dynamical systems
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2022), pp. 45-53

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the qualitative behaviour of the flow in a neighbourhood of closed invariant sets of dynamical systems. The properties of compactness, invariance, and connectivity of pseudo-prolongations are investigated. A rather deep analysis of the flow in the vicinity of a compact invariant set of asymptotically compact phase spaces is presented. The connection of pseudo-prolongation with the first positive prolongation of T. Ura and the set of weakly elliptic points is refined.
Keywords: dynamical system; closed set; attraction; prolongation.
@article{BGUMI_2022_3_a3,
     author = {B. S. Kalitin},
     title = {Pseudo-prolongations in the qualitative theory of dynamical systems},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {45--53},
     publisher = {mathdoc},
     volume = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a3/}
}
TY  - JOUR
AU  - B. S. Kalitin
TI  - Pseudo-prolongations in the qualitative theory of dynamical systems
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 45
EP  - 53
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a3/
LA  - ru
ID  - BGUMI_2022_3_a3
ER  - 
%0 Journal Article
%A B. S. Kalitin
%T Pseudo-prolongations in the qualitative theory of dynamical systems
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 45-53
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a3/
%G ru
%F BGUMI_2022_3_a3
B. S. Kalitin. Pseudo-prolongations in the qualitative theory of dynamical systems. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2022), pp. 45-53. http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a3/