Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2022_3_a1, author = {T. S. Mardvilko and A. A. Pekarskii}, title = {Application of the real {Hardy-Sobolev} space on the line to study the order of uniform rational approximations of functions}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {16--36}, publisher = {mathdoc}, volume = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a1/} }
TY - JOUR AU - T. S. Mardvilko AU - A. A. Pekarskii TI - Application of the real Hardy-Sobolev space on the line to study the order of uniform rational approximations of functions JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2022 SP - 16 EP - 36 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a1/ LA - ru ID - BGUMI_2022_3_a1 ER -
%0 Journal Article %A T. S. Mardvilko %A A. A. Pekarskii %T Application of the real Hardy-Sobolev space on the line to study the order of uniform rational approximations of functions %J Journal of the Belarusian State University. Mathematics and Informatics %D 2022 %P 16-36 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a1/ %G ru %F BGUMI_2022_3_a1
T. S. Mardvilko; A. A. Pekarskii. Application of the real Hardy-Sobolev space on the line to study the order of uniform rational approximations of functions. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2022), pp. 16-36. http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a1/
[1] A. A. Pekarskii, “Ravnomernye ratsionalnye priblizheniya i prostranstva Khardi-Soboleva”, Matematicheskie zametki, 56(4) (1994), 132–140
[2] J. B. Garnett, Bounded analytic function, Graduate texts in mathematics, 236, Springer, New York, 2007, XIV+463 pp. | DOI
[3] R. R. Coifman, G. Weiss, “Extension of Hardy spaces and their use in analysis”, Bulletin of the American Mathematical Society, 83(4) (1977), 569–645 | DOI | MR
[4] V. G. Krotov, “Differentsialnye svoistva granichnykh funktsii iz prostranstv Khardi”, Mathematische Nachrichten, 126(1) (1986), 241–253 | DOI | MR
[5] R. A. DeVore, G. G. Lorentz, Constructive approximation, Springer, Berlin, 1993, 462 pp. | MR
[6] A. A. Pekarskii, “Skorost ratsionalnoi approksimatsii i differentsialnye svoistva funktsii”, Analysis Mathematica, 17(2) (1991), 153–171 | DOI
[7] G. G. Lorentz, M. V. Golitschek, Y. Makovoz, Constructive approximation. Advanced problem, Springer, Berlin, 1996, 660 pp. | MR
[8] E. A. Rovba, “Priblizhenie analiticheskikh funktsii so schetnym chislom osobennostei na veschestvennoi osi ratsionalnymi funktsiyami”, Vestnik Belorusskogo gosudarstvennogo universiteta imeni VI Lenina. Seriya 1. Matematika. Mekhanika. Fizika, 2 (1976), 52–54
[9] F. W. King, Hilbert transform, Cambridge University Press, Cambridge, 2009, 896 pp. | MR
[10] A. A. Pekarskii, “Ratsionalnye priblizheniya vypuklykh funktsii”, Matematicheskie zametki, 38(5) (1985), 679–690
[11] A. A. Pekarskii, “Klassy analiticheskikh funktsii, opredelyaemye nailuchshimi ratsionalnymi priblizheniyami v Hp”, Matematicheskii sbornik, 127(1) (1985), 3–20
[12] A. A. Pekarskii, “Chebyshevskie ratsionalnye priblizheniya v kruge, na okruzhnosti i na otrezke”, Matematicheskii sbornik, 133(1) (1987), 86–102
[13] G. Khardi, D. zh. Littlvud, G. Polia, Neravenstva, Gosudarstvennoe izdatelstvo inostrannoi literatury, Moskva, 1948, 456 pp.
[14] P. P. Petrushev, V. A. Popov, Rational approximation of real functions, Cambridge University Press, Cambridge, 1987, 384 pp. | MR
[15] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii nepreryvnykh funktsii s kharakternymi osobennostyami”, Matematicheskii sbornik, 73(4) (1967), 630–638
[16] A. P. Bulanov, “Priblizhenie vypuklykh funktsii s zadannym modulem nepreryvnosti ratsionalnymi funktsiyami”, Matematicheskii sbornik, 105(1) (1978), 3–27
[17] A. Pushnitski, D. Yafaev, “Best rational approximation of functions with logarithmic singularities”, Constructive approximation, 46(2) (2017), 243–269 | DOI | MR