Application of the real Hardy-Sobolev space on the line to study the order of uniform rational approximations of functions
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2022), pp. 16-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The real space of Hardy-Sobolev on a straight line is considered and some sufficient conditions for belonging to functions to this space are described. Estimates of the norm of functions from this space are also obtained. Various examples of functions from the Hardy-Sobolev space are given and the order of their best uniform rational approximations are investigated. Estimates of the best rational approximations for even and odd continuations of functions with monotonous derivatives are obtained. The order of the best rational approximations of the even and odd continuations of functions in the general case have also been studied. Estimates are given both considering the continuity module and without it. The obtained results are also used to study the best rational approximations of functions with a kink, introduced by A. A. Gonchar.
Keywords: Hardy space; Sobolev space; Hardy-Sobolev space; uniform rational approximations; even and odd continuations of functions.
@article{BGUMI_2022_3_a1,
     author = {T. S. Mardvilko and A. A. Pekarskii},
     title = {Application of the real {Hardy-Sobolev} space on the line to study the order of uniform rational approximations of functions},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {16--36},
     publisher = {mathdoc},
     volume = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a1/}
}
TY  - JOUR
AU  - T. S. Mardvilko
AU  - A. A. Pekarskii
TI  - Application of the real Hardy-Sobolev space on the line to study the order of uniform rational approximations of functions
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 16
EP  - 36
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a1/
LA  - ru
ID  - BGUMI_2022_3_a1
ER  - 
%0 Journal Article
%A T. S. Mardvilko
%A A. A. Pekarskii
%T Application of the real Hardy-Sobolev space on the line to study the order of uniform rational approximations of functions
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 16-36
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a1/
%G ru
%F BGUMI_2022_3_a1
T. S. Mardvilko; A. A. Pekarskii. Application of the real Hardy-Sobolev space on the line to study the order of uniform rational approximations of functions. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2022), pp. 16-36. http://geodesic.mathdoc.fr/item/BGUMI_2022_3_a1/

[1] A. A. Pekarskii, “Ravnomernye ratsionalnye priblizheniya i prostranstva Khardi-Soboleva”, Matematicheskie zametki, 56(4) (1994), 132–140

[2] J. B. Garnett, Bounded analytic function, Graduate texts in mathematics, 236, Springer, New York, 2007, XIV+463 pp. | DOI

[3] R. R. Coifman, G. Weiss, “Extension of Hardy spaces and their use in analysis”, Bulletin of the American Mathematical Society, 83(4) (1977), 569–645 | DOI | MR

[4] V. G. Krotov, “Differentsialnye svoistva granichnykh funktsii iz prostranstv Khardi”, Mathematische Nachrichten, 126(1) (1986), 241–253 | DOI | MR

[5] R. A. DeVore, G. G. Lorentz, Constructive approximation, Springer, Berlin, 1993, 462 pp. | MR

[6] A. A. Pekarskii, “Skorost ratsionalnoi approksimatsii i differentsialnye svoistva funktsii”, Analysis Mathematica, 17(2) (1991), 153–171 | DOI

[7] G. G. Lorentz, M. V. Golitschek, Y. Makovoz, Constructive approximation. Advanced problem, Springer, Berlin, 1996, 660 pp. | MR

[8] E. A. Rovba, “Priblizhenie analiticheskikh funktsii so schetnym chislom osobennostei na veschestvennoi osi ratsionalnymi funktsiyami”, Vestnik Belorusskogo gosudarstvennogo universiteta imeni VI Lenina. Seriya 1. Matematika. Mekhanika. Fizika, 2 (1976), 52–54

[9] F. W. King, Hilbert transform, Cambridge University Press, Cambridge, 2009, 896 pp. | MR

[10] A. A. Pekarskii, “Ratsionalnye priblizheniya vypuklykh funktsii”, Matematicheskie zametki, 38(5) (1985), 679–690

[11] A. A. Pekarskii, “Klassy analiticheskikh funktsii, opredelyaemye nailuchshimi ratsionalnymi priblizheniyami v Hp”, Matematicheskii sbornik, 127(1) (1985), 3–20

[12] A. A. Pekarskii, “Chebyshevskie ratsionalnye priblizheniya v kruge, na okruzhnosti i na otrezke”, Matematicheskii sbornik, 133(1) (1987), 86–102

[13] G. Khardi, D. zh. Littlvud, G. Polia, Neravenstva, Gosudarstvennoe izdatelstvo inostrannoi literatury, Moskva, 1948, 456 pp.

[14] P. P. Petrushev, V. A. Popov, Rational approximation of real functions, Cambridge University Press, Cambridge, 1987, 384 pp. | MR

[15] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii nepreryvnykh funktsii s kharakternymi osobennostyami”, Matematicheskii sbornik, 73(4) (1967), 630–638

[16] A. P. Bulanov, “Priblizhenie vypuklykh funktsii s zadannym modulem nepreryvnosti ratsionalnymi funktsiyami”, Matematicheskii sbornik, 105(1) (1978), 3–27

[17] A. Pushnitski, D. Yafaev, “Best rational approximation of functions with logarithmic singularities”, Constructive approximation, 46(2) (2017), 243–269 | DOI | MR