Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2022_2_a9, author = {M. P. Dymkov and S. M. Dymkou}, title = {A method for relaxing state constraints in nonsmooth optimal control problems}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {107--114}, publisher = {mathdoc}, volume = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a9/} }
TY - JOUR AU - M. P. Dymkov AU - S. M. Dymkou TI - A method for relaxing state constraints in nonsmooth optimal control problems JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2022 SP - 107 EP - 114 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a9/ LA - en ID - BGUMI_2022_2_a9 ER -
%0 Journal Article %A M. P. Dymkov %A S. M. Dymkou %T A method for relaxing state constraints in nonsmooth optimal control problems %J Journal of the Belarusian State University. Mathematics and Informatics %D 2022 %P 107-114 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a9/ %G en %F BGUMI_2022_2_a9
M. P. Dymkov; S. M. Dymkou. A method for relaxing state constraints in nonsmooth optimal control problems. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 107-114. http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a9/
[1] A. V. Arutyunov, S. M. Aseev, “Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints”, SIAM Journal on Control and Optimization, 35:3 (1997), 930–952 | DOI | MR | Zbl
[2] B. S. Mordukhovich, “Discrete approximations and refined Euler – Lagrange conditions for nonconvex differential inclusions”, SIAM Journal on Control and Optimization, 33:3 (1995), 882–915 | DOI | MR | Zbl
[3] R. F. Hartl, S. P. Sethi, R. G. Vickson, “A survey of the maximum principles for optimal control problems with state constraints”, SIAM Review, 37:2 (1995), 181–218 | DOI | MR | Zbl
[4] F. H. Clarke, Optimization and nonsmooth analysis, Willey, New York, 1983, 308 pp. | MR | Zbl
[5] K. L. Teo, C. J. Goh, K. H. Wong, A unified computational approach to optimal control problems, Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Scientific and Technical, Harlow, 1991, 329 pp. | MR | Zbl
[6] B. Sh. Mordukhovich, Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, Moskva, 1988, 360 pp. | MR
[7] V. V. Gorokhovik, Konechnomernye zadachi optimizatsii, Izdatelskii tsentr BGU, Minsk, 2007, 240 pp. | MR
[8] S. M. Aseev, “Zadacha optimalnogo upravleniya dlya differentsialnogo vklyucheniya s fazovym ogranicheniem. Gladkie approksimatsii i neobkhodimye usloviya optimalnosti”, Trudy mezhdunarodnoi konferentsii, posvyaschennoi 90-letiyu so dnya rozhdeniya LS Pontryagina (Moskva, Rossiya). Geometricheskaya teoriya upravleniya, Itogi Nauki i Tekhniki. Seriya Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 64, VINITI, Moskva, 1999, 57–81 | MR
[9] S. Dymkou, “Approximation of the constrained nonsmooth optimal control problems and their applications for the robot planning motion”, Book of abstracts of 5th International congress on industrial and applied mathematics (Sydney, Australia), ICIAM 2003 Management Committee, Sydney, 2003, 184
[10] V. Demyanov, A. Rubinov, Constructive nonsmooth analysis, Published Verlag Peter Lang, Frankfurt am Main, 1995, 416 pp. | MR
[11] S. Dymkou, M. Dymkov, E. Rogers, K. Galkowski, “Optimal control of non-stationary differential linear repetitive processes”, Integral Equations and Operator Theory, 60:2 (2008), 201–216 | DOI | MR | Zbl
[12] M. Dymkov, E. Rogers, S. Dymkou, K. Galkowski, “Constrained optimal control theory for differential linear repetitive processes”, SIAM Journal on Control and Optimization, 47:1 (2008), 396–420 | DOI | MR | Zbl
[13] M. P. Dymkov, “O strukture resheniya v lineinoi zadache dvizheniya gaza v truboprovode”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2017), 27–37