A method for relaxing state constraints in nonsmooth optimal control problems
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 107-114

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the optimal control problem described by a system of ordinary differential equations in the presence of state constraints. Theoretical results are obtained concerning the approximation of this problem by a sequence of new optimal control problems with a modified right-hand side of the control system and no state constraints. The issues of the approximation of continuous control systems by their discrete versions are also discussed.
Keywords: Optimal control; state constraints; nonsmooth optimisation; approximation.
@article{BGUMI_2022_2_a9,
     author = {M. P. Dymkov and S. M. Dymkou},
     title = {A method for relaxing state constraints in nonsmooth optimal control problems},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {107--114},
     publisher = {mathdoc},
     volume = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a9/}
}
TY  - JOUR
AU  - M. P. Dymkov
AU  - S. M. Dymkou
TI  - A method for relaxing state constraints in nonsmooth optimal control problems
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 107
EP  - 114
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a9/
LA  - en
ID  - BGUMI_2022_2_a9
ER  - 
%0 Journal Article
%A M. P. Dymkov
%A S. M. Dymkou
%T A method for relaxing state constraints in nonsmooth optimal control problems
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 107-114
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a9/
%G en
%F BGUMI_2022_2_a9
M. P. Dymkov; S. M. Dymkou. A method for relaxing state constraints in nonsmooth optimal control problems. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 107-114. http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a9/