Mathematical modelling of salt ion transfer in the three-dimensional desalting channel of an electrodialysis apparatus
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 70-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new 3D model of $1 : 1$ salt ion transfer in the desalting channel of an electrodialysis apparatus is presented and investigated in this paper. For the first time a three-dimensional mathematical model of salt ion transfer in the desalting channel taking into account the electroconvection based on the system of Nernst – Planck, Poisson and Navier – Stokes equations with the electric force and the natural boundary conditions is proposed. To solve the boundary value problem, the finite element method is used in the cross-platform numerical analysis software COMSOL Multiphysics in combination with the method of successive approximations, when the electrochemical and hydrodynamic parts of the problem are solved one by one on the current layer. In turn, the electrochemical and hydrodynamic parts of the problem are solved by Newton’s method. As a result of numerical analysis, the fundamental regularities of salt ion transfer in a three-dimensional channel, the emergence and development of electroconvective vortices, including the discovery of new three-dimensional spiral forms of salt ions, are established for the first time. It is shown that electroconvective vortices exist in the form of clusters, within which vortex bifurcations can occur. Thus, the currently existing simplified view of the structure of electroconvective vortices is clarified and developed.
Keywords: 3D mathematical model of transport; 3D model; three-dimensional model; membrane systems; ion exchange membrane; mathematical modelling; electroconvective vortices; direct numerical simulation.
@article{BGUMI_2022_2_a6,
     author = {A. V. Kovalenko and A. V. Ovsyannikova},
     title = {Mathematical modelling of salt ion transfer in the three-dimensional desalting channel of an electrodialysis apparatus},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {70--81},
     publisher = {mathdoc},
     volume = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a6/}
}
TY  - JOUR
AU  - A. V. Kovalenko
AU  - A. V. Ovsyannikova
TI  - Mathematical modelling of salt ion transfer in the three-dimensional desalting channel of an electrodialysis apparatus
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 70
EP  - 81
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a6/
LA  - ru
ID  - BGUMI_2022_2_a6
ER  - 
%0 Journal Article
%A A. V. Kovalenko
%A A. V. Ovsyannikova
%T Mathematical modelling of salt ion transfer in the three-dimensional desalting channel of an electrodialysis apparatus
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 70-81
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a6/
%G ru
%F BGUMI_2022_2_a6
A. V. Kovalenko; A. V. Ovsyannikova. Mathematical modelling of salt ion transfer in the three-dimensional desalting channel of an electrodialysis apparatus. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 70-81. http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a6/

[1] C. F. Carolin, P. S. Kumar, A. Saravanan, G. J. Joshiba, M. Naushad, “Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review”, Journal of Environmental Chemical Engineering, 5:3 (2017), 2782–2799 | DOI

[2] C. Druzgalski, A. Mani, “Statistical analysis of electroconvection near an ion-selective membrane in the highly chaotic regime”, Physical Review Fluids, 1:7 (2016), 073601 | DOI

[3] S. Kang, R. Kwak, “Pattern formation of three-dimensional electroconvection on a charge selective surface”, Physical Review Letters, 124:15 (2020), 154502 | DOI

[4] E. A. Demekhin, N. V. Nikitin, V. S. Shelistov, “Three-dimensional coherent structures of electrokinetic instability”, Physical Review E, 90:1 (2014), 013031 | DOI

[5] E. N. Kalaydin, NYu. Ganchenko, G. S. Ganchenko, N. V. Nikitin, E. A. Demekhin, “Thermoelectrokinetic instability and salt superconcentration near permselective electric membranes”, Physical Review Fluids, 2:11 (2017), 114201 | DOI

[6] V. V. Nikonenko, A. V. Kovalenko, MKh. Urtenov, N. D. Pismenskaya, J. Han, P. h. Sistat, “Desalination at overlimiting currents: state-of-the-art and perspectives”, Desalination, 342 (2014), 85–106 | DOI

[7] MKh. Urtenov, A. M. Uzdenova, A. V. Kovalenko, V. V. Nikonenko, N. D. Pismenskaya, V. I. Vasil’eva, “Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells”, Journal of Membrane Science, 447 (2013), 190–202 | DOI

[8] A. M. Uzdenova, A. V. Kovalenko, M. Kh. Urtenov, Matematicheskie modeli elektrokonvektsii v elektromembrannykh sistemakh, Izdatelstvo Karachaevo-Cherkesskogo gosudarstvennogo universiteta, Karachaevsk, 2011, 156 pp.

[9] A. V. Pismensky, MKh. Urtenov, V. V. Nikonenko, P. h. Sistat, N. D. Pismenskaya, A. V. Kovalenko, “Model and experimental studies of gravitational convection in an electromembrane cell”, Russian Journal of Electrochemistry, 48:7 (2012), 756–766 | DOI

[10] A. V. Kovalenko, M. Kh. Urtenov, N. O. Chubyr, A. M. Uzdenova, V. A. Gudza, “Matematicheskoe modelirovanie vliyaniya osnovnykh temperaturnykh effektov na statsionarnyi perenos ionov soli v diffuzionnom sloe”, Ekologicheskii vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva, 15:3 (2018), 78–86 | DOI

[11] N. O. Chubyr, A. V. Kovalenko, M. Kh. Urtenov, Dvumernye matematicheskie modeli perenosa binarnogo elektrolita v membrannykh sistemakh (chislennyi i asimptoticheskii analiz), Kubanskii gosudarstvennyi tekhnologicheskii universitet, Krasnodar, 2012, 131 pp.

[12] A. V. Kovalenko, I. V. Gudza, N. O. Chubyr, M. Kh. Urtenov, A. A. Khromykh, “Formula dlya rascheta teoreticheskoi volt-ampernoi kharakteristiki 3D-kanala obessolivaniya EDA”, Modelirovanie, optimizatsiya i informatsionnye tekhnologii, 9:4 (2021), 1–19 | DOI

[13] A. V. Kovalenko, I. V. Gudza, A. V. Pismenskii, N. O. Chubyr, M. Kh. Urtenov, “Teoreticheskii analiz volt-ampernoi kharakteristiki nestatsionarnogo perenosa 1:1 elektrolita v membrannykh sistemakh s uchetom elektrokonvektsii i reaktsii dissotsiatsii/rekombinatsii vody”, Modelirovanie, optimizatsiya i informatsionnye tekhnologii, 9:3 (2021), 1–16 | DOI

[14] MKh. Urtenov, A. V. Kovalenko, A. I. Sukhinov, N. O. Chubyr, V. A. Gudza, “Model and numerical experiment for calculating the theoretical current-voltage characteristic in electromembrane systems”, IOP Conference Series. Materials Science and Engineering, 680 (2019), 012030 | DOI

[15] V. V. Nikonenko, S. A. Mareev, N. D. Pismenskaya, A. M. Uzdenova, A. V. Kovalenko, M. Kh. Urtenov, “Effekt elektrokonvektsii i ego ispolzovanie dlya intensifikatsii massoperenosa v elektrodialize”, Elektrokhimiya, 53:10 (2017), 1266–1289 | DOI

[16] A. V. Kovalenko, A. M. Uzdenova, M. Kh. Urtenov, V. V. Nikonenko, Matematicheskoe modelirovanie fiziko-khimicheskikh protsessov v srede COMSOL Multiphysics 5.2, Lan, Sankt-Peterburg, 2022, 228 pp.

[17] E. V. Kazakovtseva, A. V. Kovalenko, E. N. Evdochenko, “3D-matematicheskaya model perenosa ionov 1:1 soli”, Kubanskii gosudarstvennyi tekhnologicheskii universitet. Research. Engineering, Extreme 2021, Materialy Mezhdunarodnoi nauchnoprakticheskoi konferentsii (Krasnodar, Rossiya), Izdatelskii dom – Yug, Krasnodar, 2021, 70–78

[18] A. V. Kovalenko, M. Wessling, V. V. Nikonenko, S. A. Mareev, I. A. Moroz, E. Evdochenko, “Space-charge breakdown phenomenon and spatio-temporal ion concentration and fluid flow patterns in overlimiting current electrodialysis”, Journal of Membrane Science, 636 (2021), 119583 | DOI