Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2022_2_a2, author = {A. I. Kalinin and L. I. Lavrinovich and D. Y. Prudnikova}, title = {The small parameter method in the optimisation of a quasi-linear dynamical system problem}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {23--33}, publisher = {mathdoc}, volume = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a2/} }
TY - JOUR AU - A. I. Kalinin AU - L. I. Lavrinovich AU - D. Y. Prudnikova TI - The small parameter method in the optimisation of a quasi-linear dynamical system problem JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2022 SP - 23 EP - 33 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a2/ LA - ru ID - BGUMI_2022_2_a2 ER -
%0 Journal Article %A A. I. Kalinin %A L. I. Lavrinovich %A D. Y. Prudnikova %T The small parameter method in the optimisation of a quasi-linear dynamical system problem %J Journal of the Belarusian State University. Mathematics and Informatics %D 2022 %P 23-33 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a2/ %G ru %F BGUMI_2022_2_a2
A. I. Kalinin; L. I. Lavrinovich; D. Y. Prudnikova. The small parameter method in the optimisation of a quasi-linear dynamical system problem. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 23-33. http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a2/
[1] N. N. Krasovskii, Teoriya upravleniya dvizheniem: lineinye sistemy, Nauka, Moskva, 1968, 476 pp.
[2] Yu. N. Kiselev, “Asimptoticheskoe reshenie zadachi optimalnogo bystrodeistviya dlya sistem upravleniya, blizkikh k lineinym”, Doklady Akademii nauk SSSR, 182:1 (1968), 31–34 | Zbl
[3] P. L. Falb, J. L. de-Jong, Some successive approximation methods in control and oscillation theory, Academic Press, New York, 1969, viii+240 pp. | MR
[4] F. L. Chernousko, L. D. Akulenko, B. N. Sokolov, Upravlenie kolebaniyami, Nauka, Moskva, 1980, 383 pp.
[5] A. I. Kalinin, Asimptoticheskie metody optimizatsii vozmuschennykh dinamicheskikh sistem, Ekoperspektiva, Minsk, 2000, 187 pp.
[6] L. D. Akulenko, “Optimalnoe upravlenie dvizheniyami bifilyarnogo mayatnika”, Prikladnaya matematika i mekhanika, 68:5 (2004), 793–806 | Zbl
[7] A. I. Kalinin, L. I. Lavrinovich, “Asimptotika resheniya zadachi minimizatsii integralnogo kvadratichnogo funktsionala na traektoriyakh kvazilineinoi sistemy”, Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 5 (2019), 32–43 | DOI | MR | Zbl
[8] R. Gabasov, A. I. Kalinin, F. M. Kirillova, L. I. Lavrinovich, “K asimptoticheskim metodam optimizatsii kvazilineinykh sistem upravleniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 25:3 (2019), 62–72 | DOI | MR
[9] A. I. Kalinin, “Asimptoticheskaya optimizatsiya vozmuschennykh dinamicheskikh sistem”, Vestnik BGU. Fizika. Matematika. Informatika, 3 (2016), 143–147
[10] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, Moskva, 1983, 392 pp. | MR
[11] R. Gabasov, F. M. Kirillova, Optimizatsiya lineinykh sistem: metody funktsionalnogo analiza, Izdatelstvo BGU, Minsk, 1973, 246 pp. | MR
[12] B. Sh. Mordukhovich, “Suschestvovanie optimalnykh upravlenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 6, 1976, 207–271
[13] A. I. Kalinin, “O probleme sinteza optimalnykh sistem upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 58:3 (2018), 397–402 | DOI | Zbl
[14] A. I. Kalinin, “Metod vozmuschenii dlya asimptoticheskogo resheniya kvazilineinoi zadachi optimalnogo bystrodeistviya”, Differentsialnye uravneniya, 26:4 (1990), 585–594
[15] A. I. Kalinin, “Optimizatsiya kvazilineinykh sistem upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 28:3 (1988), 325–334
[16] R. Gabasov, F. M. Kirillova, Konstruktivnye metody optimizatsii. Zadachi upravleniya, Universitetskoe, Minsk, 1984, 207 pp. | MR