The small parameter method in the optimisation of a quasi-linear dynamical system problem
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 23-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an optimisation problem for the transient process in a quasi-linear dynamical system (contains a small parameter at non-linearities) with a performance index that is a linear combination of energy costs and the duration of the process. An algorithm for constructing asymptotic approximations of a given order to the solution of this problem is proposed. The algorithm is based on the asymptotic decomposition by integer powers of a small parameter of the initial values of adjoint variables and the duration of the process that are finite-dimensional elements, according to which the solution of the problem is easily restored. The computational procedure of the algorithm includes solving the problem of optimising the transient process in a linear dynamical system, integrating systems of linear differential equations, and finding the roots of non-degenerate linear algebraic systems. We also show how the constructed asymptotic approximations can be used to construct optimal control in the problem under consideration for a given value of a small parameter.
Keywords: Small parameter; quasi-linear system; optimal control; asymptotic approximations.
@article{BGUMI_2022_2_a2,
     author = {A. I. Kalinin and L. I. Lavrinovich and D. Y. Prudnikova},
     title = {The small parameter method in the optimisation of a quasi-linear dynamical system problem},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {23--33},
     publisher = {mathdoc},
     volume = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a2/}
}
TY  - JOUR
AU  - A. I. Kalinin
AU  - L. I. Lavrinovich
AU  - D. Y. Prudnikova
TI  - The small parameter method in the optimisation of a quasi-linear dynamical system problem
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 23
EP  - 33
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a2/
LA  - ru
ID  - BGUMI_2022_2_a2
ER  - 
%0 Journal Article
%A A. I. Kalinin
%A L. I. Lavrinovich
%A D. Y. Prudnikova
%T The small parameter method in the optimisation of a quasi-linear dynamical system problem
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 23-33
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a2/
%G ru
%F BGUMI_2022_2_a2
A. I. Kalinin; L. I. Lavrinovich; D. Y. Prudnikova. The small parameter method in the optimisation of a quasi-linear dynamical system problem. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 23-33. http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a2/

[1] N. N. Krasovskii, Teoriya upravleniya dvizheniem: lineinye sistemy, Nauka, Moskva, 1968, 476 pp.

[2] Yu. N. Kiselev, “Asimptoticheskoe reshenie zadachi optimalnogo bystrodeistviya dlya sistem upravleniya, blizkikh k lineinym”, Doklady Akademii nauk SSSR, 182:1 (1968), 31–34 | Zbl

[3] P. L. Falb, J. L. de-Jong, Some successive approximation methods in control and oscillation theory, Academic Press, New York, 1969, viii+240 pp. | MR

[4] F. L. Chernousko, L. D. Akulenko, B. N. Sokolov, Upravlenie kolebaniyami, Nauka, Moskva, 1980, 383 pp.

[5] A. I. Kalinin, Asimptoticheskie metody optimizatsii vozmuschennykh dinamicheskikh sistem, Ekoperspektiva, Minsk, 2000, 187 pp.

[6] L. D. Akulenko, “Optimalnoe upravlenie dvizheniyami bifilyarnogo mayatnika”, Prikladnaya matematika i mekhanika, 68:5 (2004), 793–806 | Zbl

[7] A. I. Kalinin, L. I. Lavrinovich, “Asimptotika resheniya zadachi minimizatsii integralnogo kvadratichnogo funktsionala na traektoriyakh kvazilineinoi sistemy”, Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 5 (2019), 32–43 | DOI | MR | Zbl

[8] R. Gabasov, A. I. Kalinin, F. M. Kirillova, L. I. Lavrinovich, “K asimptoticheskim metodam optimizatsii kvazilineinykh sistem upravleniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 25:3 (2019), 62–72 | DOI | MR

[9] A. I. Kalinin, “Asimptoticheskaya optimizatsiya vozmuschennykh dinamicheskikh sistem”, Vestnik BGU. Fizika. Matematika. Informatika, 3 (2016), 143–147

[10] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, Moskva, 1983, 392 pp. | MR

[11] R. Gabasov, F. M. Kirillova, Optimizatsiya lineinykh sistem: metody funktsionalnogo analiza, Izdatelstvo BGU, Minsk, 1973, 246 pp. | MR

[12] B. Sh. Mordukhovich, “Suschestvovanie optimalnykh upravlenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 6, 1976, 207–271

[13] A. I. Kalinin, “O probleme sinteza optimalnykh sistem upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 58:3 (2018), 397–402 | DOI | Zbl

[14] A. I. Kalinin, “Metod vozmuschenii dlya asimptoticheskogo resheniya kvazilineinoi zadachi optimalnogo bystrodeistviya”, Differentsialnye uravneniya, 26:4 (1990), 585–594

[15] A. I. Kalinin, “Optimizatsiya kvazilineinykh sistem upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 28:3 (1988), 325–334

[16] R. Gabasov, F. M. Kirillova, Konstruktivnye metody optimizatsii. Zadachi upravleniya, Universitetskoe, Minsk, 1984, 207 pp. | MR