On meromorphic solutions of the equations related to the first Painlev$\acute{e}$ equation
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 15-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the generalised hierarchy of the first Painlev$\acute{e}$ equation which is a sequence of polynomial ordinary differential equations of even order that have a uniform differential-algebraic structure determined by the operator $\tilde{L_{n}}$. The first member of this hierarchy for $n=2$ is the first Painlev$\acute{e}$ equation, and the subsequent equations of order $2n-2$ contain arbitrary parameters. They are named as higher analogues of the first Painlev$\acute{e}$ equation of $2n-2$ order. The article considers the analytical properties of solutions to the equations of the generalised hierarchy of the first Painlev$\acute{e}$ equation and the related linear equations. It is established that each hierarchy equation has one dominant term, and an arbitrary meromorphic solution of any hierarchy equation cannot have a finite number of poles. The character of the mobile poles of meromorphic solutions is determined. Using the Frobenius method, sufficient conditions are obtained for the meromorphicity of the general solution of the second-order linear equations with a linear potential defined by meromorphic solutions of the first three equations of the hierarchy.
Keywords: The first Painlev$\acute{e}$ equation; hierarchies of Painlev$\acute{e}$ equations; meromorphic solutions.
@article{BGUMI_2022_2_a1,
     author = {E. V. Gromak},
     title = {On meromorphic solutions of the equations related to the first {Painlev}$\acute{e}$ equation},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {15--22},
     publisher = {mathdoc},
     volume = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a1/}
}
TY  - JOUR
AU  - E. V. Gromak
TI  - On meromorphic solutions of the equations related to the first Painlev$\acute{e}$ equation
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 15
EP  - 22
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a1/
LA  - ru
ID  - BGUMI_2022_2_a1
ER  - 
%0 Journal Article
%A E. V. Gromak
%T On meromorphic solutions of the equations related to the first Painlev$\acute{e}$ equation
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 15-22
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a1/
%G ru
%F BGUMI_2022_2_a1
E. V. Gromak. On meromorphic solutions of the equations related to the first Painlev$\acute{e}$ equation. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 15-22. http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a1/

[1] V. I. Gromak, “Analiticheskie svoistva reshenii uravnenii obobschennoi ierarkhii vtorogo uravneniya Penleve”, Differentsialnye uravneniya, 56:8 (2020), 1017–1033 | Zbl

[2] N. A. Kudryashov, Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, Institut kompyuternykh issledovanii, Moskva, 2004, 359 pp.

[3] A. H. Sakka, “Linear problems and hierarchies of Painleve equations”, Journal of Physics A. Mathematical and Theoretical, 42:2 (2009), 025210 | DOI | MR | Zbl

[4] E. L. Ains, Obyknovennye differentsialnye uravneniya, Nauchno-tekhnicheskoe izdatelstvo Ukrainy, Kharkov, 1939, 719 pp.

[5] V. I. Gromak, I. Laine, S. Shimomura, Painleve differential equations in the complex plane, Walter de Gruyter and Co, Berlin, 2002, viii+303 pp. | DOI | MR

[6] V. I. Gromak, “The Backlund transformations of the higher order Painleve equations”, Backlund and Darboux transformations. The geometry of solitons, AARMS – CRM workshop, American Mathematical Society, Providence, 2001, 3–28 | DOI | MR | Zbl

[7] E. V. Gritsuk, “O lokalnykh svoistvakh reshenii uravnenii $_{2n}P_1$”, Vestnik BGU. Fizika. Matematika. Informatika, 2 (2011), 113–118 | MR | Zbl

[8] G. V. Vittikh, Noveishie issledovaniya po odnoznachnym analiticheskim funktsiyam, Fizmatgiz, Moskva, 1960, 319 pp.

[9] N. P. Erugin, Problema Rimana, Nauka i tekhnika, Minsk, 1982, 336 pp. | MR

[10] E. Gursa, Kurs matematicheskogo analiza. Integralnye uravneniya. Variatsionnoe ischislenie, Gosudarstvennoe tekhniko-teoreticheskoe izdatelstvo, Moskva, 1934, 320 pp.

[11] J. Chazy, “Sur les equations differentielles du troisieme ordre et d’ordre superieur dont l’integrale generale a ses points critiques fixes”, Acta Mathematica, 34 (1911), 317–385 | DOI | MR | Zbl

[12] K. G. Atrokhov, E. V. Gromak, “O resheniyakh uravneniya Shazi”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2021), 51–59 | DOI | MR

[13] E. V. Gromak, “O meromorfnykh resheniyakh lineinykh uravnenii so spetsialnym invariantom”, Analiticheskie metody analiza i differentsialnykh uravnenii, Materialy 10-go Mezhdunarodnogo nauchnogo seminara, Institut matematiki NAN Belarusi, Minsk, 2021, 30