On the uniqueness of higher order Gubinelli derivatives and an analogue of the Doob – Meyer theorem for rough paths
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 6-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the features of higher order Gubinelli derivatives of controlled rough paths having an arbitrary positive Holder index. There is used a notion of the $(\alpha, \beta)$-rough map on the basis of which the sufficient conditions are given for the higher order Gubinelli derivatives uniqueness. Using the theorem on the uniqueness of higher order Gubinelli derivatives an analogue of the Doob – Meyer theorem for rough paths with an arbitrary positive Holder index is proved. In the final section of the paper, we prove that the law of the local iterated logarithm for fractional Brownian motion allows using all the main results of this paper for integration over the multidimensional fractional Brownian motions of the arbitrary Hurst index. The examples demonstrating the connection between the rough path integrals and the Ito and Stratonovich integrals are represented.
Keywords: Rough paths; Gubinelli derivative; Doob – Meyer expansion; fractional Brownian motion.
@article{BGUMI_2022_2_a0,
     author = {M. M. Vas'kovskii},
     title = {On the uniqueness of higher order {Gubinelli} derivatives and an analogue of the {Doob} {\textendash} {Meyer} theorem for rough paths},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {6--14},
     publisher = {mathdoc},
     volume = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a0/}
}
TY  - JOUR
AU  - M. M. Vas'kovskii
TI  - On the uniqueness of higher order Gubinelli derivatives and an analogue of the Doob – Meyer theorem for rough paths
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 6
EP  - 14
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a0/
LA  - ru
ID  - BGUMI_2022_2_a0
ER  - 
%0 Journal Article
%A M. M. Vas'kovskii
%T On the uniqueness of higher order Gubinelli derivatives and an analogue of the Doob – Meyer theorem for rough paths
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 6-14
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a0/
%G ru
%F BGUMI_2022_2_a0
M. M. Vas'kovskii. On the uniqueness of higher order Gubinelli derivatives and an analogue of the Doob – Meyer theorem for rough paths. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 6-14. http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a0/

[1] T. J. Lyons, “Differential equations driven by rough signals”, Revista Matematica Iberoamericana, 14:2 (1998), 215–310 | DOI | MR | Zbl

[2] P. K. Friz, M. Hairer, A course on rough paths: with an introduction to regularity structures, Springer, Cham, 2014, xiv+251 pp. | DOI | MR

[3] M. Gubinelli, “Controlling rough paths”, Journal of Functional Analysis, 216:1 (2004), 86–140 | DOI | MR | Zbl

[4] L. Coutin, Z. Qian, “Stochastic analysis, rough path analysis and fractional Brownian motions”, Probability Theory and Related Fields, 122:1 (2002), 108–140 | DOI | MR | Zbl

[5] F. Baudoin, L. Coutin, “Operators associated with a stochastic differential equation driven by fractional Brownian motions”, Stochastic Processes and their Applications, 117:5 (2007), 550–574 | DOI | MR | Zbl

[6] A. Neuenkirch, I. Nourdin, A. Robler, S. Tindel, “Trees and asymptotic expansions for fractional stochastic differential equations”, Annales de l’Institut Henri Poincare. Probabilites et Statistiques, 45:1 (2009), 157–174 | DOI | MR | Zbl

[7] M. M. Vaskovskii, I. V. Kachan, “Asimptoticheskie razlozheniya reshenii stokhasticheskikh differentsialnykh uravnenii s drobnymi brounovskimi dvizheniyami”, Doklady Natsionalnoi akademii nauk Belarusi, 62:4 (2018), 398–405 | DOI | MR

[8] M. Vaskouski, I. Kachan, “Asymptotic expansions of solutions of stochastic differential equations driven by multivariate fractional Brownian motions having Hurst indices greater than 1/3”, Stochastic Analysis and Applications, 36:6 (2018), 909–931 | DOI | MR | Zbl

[9] M. M. Vaskovskii, “Stokhasticheskie differentsialnye uravneniya smeshannogo tipa so standartnymi i drobnymi brounovskimi dvizheniyami s indeksami Khersta, bolshimi 1/3”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 56:1 (2020), 36–50 | DOI | MR

[10] A. A. Levakov, M. M. Vaskovskii, Stokhasticheskie differentsialnye uravneniya i vklyucheniya, BGU, Minsk, 2019, 495 pp.

[11] M. M. Vaskovskii, “Suschestvovanie i edinstvennost reshenii differentsialnykh uravnenii, slabo upravlyaemykh grubymi traektoriyami s proizvolnym polozhitelnym pokazatelem Geldera”, Differentsialnye uravneniya, 57:10 (2021), 1305–1317 | DOI

[12] M. M. Vaskovskii, “Ustoichivost reshenii stokhasticheskikh differentsialnykh uravnenii, slabo upravlyaemykh grubymi traektoriyami s proizvolnym polozhitelnym pokazatelem Geldera”, Differentsialnye uravneniya, 57:11 (2021), 1443–1449 | DOI

[13] T. Lyons, N. Victoir, “An extension theorem to rough paths”, Annales de l’Institut Henri Poincare. Analyse Non Linéaire, 24:5 (2007), 835–847 | DOI | MR | Zbl

[14] F. Biagini, Y. Hu, B. Øksendal, T. Zhang, Stochastic calculus for fractional Brownian motion and applications, Springer, London, 2008, xii+330 pp. | DOI | MR

[15] S. Vatanabe, N. Ikeda, Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, Moskva, 1986, 448 pp. | MR

[16] M. Vaskouski, A. Zadorozhnyuk, “Resistance distances in Cayley graphs on symmetric groups”, Discrete Applied Mathematics, 227 (2017), 121–135 | DOI | MR | Zbl

[17] M. M. Vaskovskii, “O sluchainykh bluzhdaniyakh na grafakh Keli grupp kompleksnykh otrazhenii”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2021), 51–56 | DOI

[18] A. O. Zadorozhnyuk, “Monotonnost veroyatnostei sostoyanii sluchainogo bluzhdaniya na konechnykh reshetkakh”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2022), 38–45 | DOI | MR