Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2022_2_a0, author = {M. M. Vas'kovskii}, title = {On the uniqueness of higher order {Gubinelli} derivatives and an analogue of the {Doob} {\textendash} {Meyer} theorem for rough paths}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {6--14}, publisher = {mathdoc}, volume = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a0/} }
TY - JOUR AU - M. M. Vas'kovskii TI - On the uniqueness of higher order Gubinelli derivatives and an analogue of the Doob – Meyer theorem for rough paths JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2022 SP - 6 EP - 14 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a0/ LA - ru ID - BGUMI_2022_2_a0 ER -
%0 Journal Article %A M. M. Vas'kovskii %T On the uniqueness of higher order Gubinelli derivatives and an analogue of the Doob – Meyer theorem for rough paths %J Journal of the Belarusian State University. Mathematics and Informatics %D 2022 %P 6-14 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a0/ %G ru %F BGUMI_2022_2_a0
M. M. Vas'kovskii. On the uniqueness of higher order Gubinelli derivatives and an analogue of the Doob – Meyer theorem for rough paths. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 6-14. http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a0/
[1] T. J. Lyons, “Differential equations driven by rough signals”, Revista Matematica Iberoamericana, 14:2 (1998), 215–310 | DOI | MR | Zbl
[2] P. K. Friz, M. Hairer, A course on rough paths: with an introduction to regularity structures, Springer, Cham, 2014, xiv+251 pp. | DOI | MR
[3] M. Gubinelli, “Controlling rough paths”, Journal of Functional Analysis, 216:1 (2004), 86–140 | DOI | MR | Zbl
[4] L. Coutin, Z. Qian, “Stochastic analysis, rough path analysis and fractional Brownian motions”, Probability Theory and Related Fields, 122:1 (2002), 108–140 | DOI | MR | Zbl
[5] F. Baudoin, L. Coutin, “Operators associated with a stochastic differential equation driven by fractional Brownian motions”, Stochastic Processes and their Applications, 117:5 (2007), 550–574 | DOI | MR | Zbl
[6] A. Neuenkirch, I. Nourdin, A. Robler, S. Tindel, “Trees and asymptotic expansions for fractional stochastic differential equations”, Annales de l’Institut Henri Poincare. Probabilites et Statistiques, 45:1 (2009), 157–174 | DOI | MR | Zbl
[7] M. M. Vaskovskii, I. V. Kachan, “Asimptoticheskie razlozheniya reshenii stokhasticheskikh differentsialnykh uravnenii s drobnymi brounovskimi dvizheniyami”, Doklady Natsionalnoi akademii nauk Belarusi, 62:4 (2018), 398–405 | DOI | MR
[8] M. Vaskouski, I. Kachan, “Asymptotic expansions of solutions of stochastic differential equations driven by multivariate fractional Brownian motions having Hurst indices greater than 1/3”, Stochastic Analysis and Applications, 36:6 (2018), 909–931 | DOI | MR | Zbl
[9] M. M. Vaskovskii, “Stokhasticheskie differentsialnye uravneniya smeshannogo tipa so standartnymi i drobnymi brounovskimi dvizheniyami s indeksami Khersta, bolshimi 1/3”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 56:1 (2020), 36–50 | DOI | MR
[10] A. A. Levakov, M. M. Vaskovskii, Stokhasticheskie differentsialnye uravneniya i vklyucheniya, BGU, Minsk, 2019, 495 pp.
[11] M. M. Vaskovskii, “Suschestvovanie i edinstvennost reshenii differentsialnykh uravnenii, slabo upravlyaemykh grubymi traektoriyami s proizvolnym polozhitelnym pokazatelem Geldera”, Differentsialnye uravneniya, 57:10 (2021), 1305–1317 | DOI
[12] M. M. Vaskovskii, “Ustoichivost reshenii stokhasticheskikh differentsialnykh uravnenii, slabo upravlyaemykh grubymi traektoriyami s proizvolnym polozhitelnym pokazatelem Geldera”, Differentsialnye uravneniya, 57:11 (2021), 1443–1449 | DOI
[13] T. Lyons, N. Victoir, “An extension theorem to rough paths”, Annales de l’Institut Henri Poincare. Analyse Non Linéaire, 24:5 (2007), 835–847 | DOI | MR | Zbl
[14] F. Biagini, Y. Hu, B. Øksendal, T. Zhang, Stochastic calculus for fractional Brownian motion and applications, Springer, London, 2008, xii+330 pp. | DOI | MR
[15] S. Vatanabe, N. Ikeda, Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, Moskva, 1986, 448 pp. | MR
[16] M. Vaskouski, A. Zadorozhnyuk, “Resistance distances in Cayley graphs on symmetric groups”, Discrete Applied Mathematics, 227 (2017), 121–135 | DOI | MR | Zbl
[17] M. M. Vaskovskii, “O sluchainykh bluzhdaniyakh na grafakh Keli grupp kompleksnykh otrazhenii”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 3 (2021), 51–56 | DOI
[18] A. O. Zadorozhnyuk, “Monotonnost veroyatnostei sostoyanii sluchainogo bluzhdaniya na konechnykh reshetkakh”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2022), 38–45 | DOI | MR