Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2022_2_a0, author = {M. M. Vas'kovskii}, title = {On the uniqueness of higher order {Gubinelli} derivatives and an analogue of the {Doob} {\textendash} {Meyer} theorem for rough paths}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {6--14}, publisher = {mathdoc}, volume = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a0/} }
TY - JOUR AU - M. M. Vas'kovskii TI - On the uniqueness of higher order Gubinelli derivatives and an analogue of the Doob – Meyer theorem for rough paths JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2022 SP - 6 EP - 14 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a0/ LA - ru ID - BGUMI_2022_2_a0 ER -
%0 Journal Article %A M. M. Vas'kovskii %T On the uniqueness of higher order Gubinelli derivatives and an analogue of the Doob – Meyer theorem for rough paths %J Journal of the Belarusian State University. Mathematics and Informatics %D 2022 %P 6-14 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a0/ %G ru %F BGUMI_2022_2_a0
M. M. Vas'kovskii. On the uniqueness of higher order Gubinelli derivatives and an analogue of the Doob – Meyer theorem for rough paths. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2022), pp. 6-14. http://geodesic.mathdoc.fr/item/BGUMI_2022_2_a0/