Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2022_1_a9, author = {M. E. Vatkin and D. A. Vorobey and M. V. Yakovlev and M. G. Krivova}, title = {Space semantic aware loss function for embedding creation in case of transaction data}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {97--102}, publisher = {mathdoc}, volume = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a9/} }
TY - JOUR AU - M. E. Vatkin AU - D. A. Vorobey AU - M. V. Yakovlev AU - M. G. Krivova TI - Space semantic aware loss function for embedding creation in case of transaction data JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2022 SP - 97 EP - 102 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a9/ LA - en ID - BGUMI_2022_1_a9 ER -
%0 Journal Article %A M. E. Vatkin %A D. A. Vorobey %A M. V. Yakovlev %A M. G. Krivova %T Space semantic aware loss function for embedding creation in case of transaction data %J Journal of the Belarusian State University. Mathematics and Informatics %D 2022 %P 97-102 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a9/ %G en %F BGUMI_2022_1_a9
M. E. Vatkin; D. A. Vorobey; M. V. Yakovlev; M. G. Krivova. Space semantic aware loss function for embedding creation in case of transaction data. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 97-102. http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a9/
[1] P. Gupta, R. E. Banchs, P. Rosso, “Squeezing bottlenecks: exploring the limits of autoencoder semantic representation capabilities”, Neurocomputing, 175:PB (2016), 1001–1008 | DOI
[2] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, “Distributed representations of words and phrases and their compositionality”, Proceedings of the 26-th International conference on neural information processing system (Lake Tahoe, Nevada, USA), v. 2, Curran Associates Inc, New York, 2013, 3111–3119
[3] H. Bourlard, Y. Kamp, “Auto-association by multilayer perceptrons and singular value decomposition”, Biological Cybernetics, 59 (1988), 291–294 | DOI | MR | Zbl
[4] Credit card fraud detection, Machine Learning Group, Cambridge, 2018 https://www.kaggle.com/mlg-ulb/creditcardfraud/data | MR
[5] M. A. Al-Shabi, “Credit card fraud detection using autoencoder model in unbalanced datasets”, Journal of Advances in Mathematics and Computer Science, 33:5 (2019), 1–16 | DOI
[6] A. Husejinovic, “Credit card fraud detection using naive Bayesian and C4.5 decision tree classifiers”, Periodicals of Engineering and Natural Sciences, 8:1 (2020), 1–5
[7] T. Saito, M. Rehmsmeier, “The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets”, PLoS One, 10:3 (2015) | DOI
[8] J. Davis, M. Goadrich, “The relationship between precision-recall and ROC curves”, Proceedings of the 23-rd International conference on machine learning (Pittsburgh, USA), Association for Computing Machinery, New York, 2006, 233–240 | DOI
[9] E. E. Marushko, A. A. Doudkin, X. Zheng, “Identification of Earth’s surface objects using ensembles of convolutional neural networks”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2021), 114–123 | DOI