Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2022_1_a7, author = {A. V. Nikitin and G. I. Mikhasev}, title = {Estimation of the effective {Young{\textquoteright}s} modulus for open cell porous titanium based on $3D$ {Gibson} - {Ashby} cell array}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {75--82}, publisher = {mathdoc}, volume = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a7/} }
TY - JOUR AU - A. V. Nikitin AU - G. I. Mikhasev TI - Estimation of the effective Young’s modulus for open cell porous titanium based on $3D$ Gibson - Ashby cell array JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2022 SP - 75 EP - 82 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a7/ LA - ru ID - BGUMI_2022_1_a7 ER -
%0 Journal Article %A A. V. Nikitin %A G. I. Mikhasev %T Estimation of the effective Young’s modulus for open cell porous titanium based on $3D$ Gibson - Ashby cell array %J Journal of the Belarusian State University. Mathematics and Informatics %D 2022 %P 75-82 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a7/ %G ru %F BGUMI_2022_1_a7
A. V. Nikitin; G. I. Mikhasev. Estimation of the effective Young’s modulus for open cell porous titanium based on $3D$ Gibson - Ashby cell array. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 75-82. http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a7/
[1] A. V. Nikitsin, “Estimation of the mechanical properties for bone – titanium biocomposite based on computed tomography data and finite element modeling”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2020), 79–85 | DOI
[2] L. J. Gibson, M. F. Ashby, Cellular solids: Structure and properties, Cambridge University Press, Cambridge, 1997, XVIII+510 pp. | DOI
[3] L. J. Gibson, “Mechanical behavior of metallic foams”, Annual Review of Material Science, 30 (2000), 191–227 | DOI
[4] T. Uhlirova, W. Pabst, “Conductivity and Young’s modulus of porous metamaterials based on Gibson – Ashby cells”, Scripta Materialia, 159 (2019), 1–4 | DOI
[5] R. Singh, P. D. Lee, T. C. Lindley, C. Kohlhauser, C. Hellmich, M. Bram, “Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling”, Acta Biomaterialia, 6:6 (2010), 2342–2351 | DOI
[6] A. A. Umanskii, Handbook of the designer of industrial, residential and public buildings and structures. Calculation-theoretical, Gosudarstvennoe izdatel’stvo literatury po stroitel’stvu, arkhitekture i stroitel’nym materialam, Moscow, 1960, 1046 pp.
[7] A. V. Nikitsin, “Biomechanical assessment of the bone ingrowth effect during cementless endoprosthesis osteointegration”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 13:4-1 (2013), 90–96 | DOI
[8] A. Schuh, J. Luyten, R. Vidael, W. Honle, T. Schmickal, “Porous titanium implant materials and their potential in orthopedic surgery”, Materials Science and Engineering Technology, 38:12 (2007), 1015–1018 | DOI
[9] C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, “Processing of biocompatible porous Ti and Mg”, Scripta Materialia, 45:10 (2001), 1147–1153 | DOI
[10] C. E. Wen, Y. Yamada, A. Nouri, P. D. Hodgson, “Porous titanium with porosity gradients for biomedical applications”, Material Science Forum, 539–543 (2007), 720–725 | DOI
[11] S. Thelen, F. Barthelat, L. C. Brinson, “Mechanics considerations for microporous titanium as an orthopedic implant material”, Journal of Biomedical Materials Research, 69A:4 (2004), 601–610 | DOI
[12] N. G. Davis, J. Teisen, C. Schuh, D. C. Dunand, “Solid-state foaming of titanium by superplastic expansion of argon-filled pores”, Journal of Materials Research, 16:5 (2001), 1508–1519 | DOI