Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2022_1_a6, author = {S. V. Agievich}, title = {An upper bound on binomial coefficients in the de {Moivre} {\textendash} {Laplace} form}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {66--74}, publisher = {mathdoc}, volume = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a6/} }
TY - JOUR AU - S. V. Agievich TI - An upper bound on binomial coefficients in the de Moivre – Laplace form JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2022 SP - 66 EP - 74 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a6/ LA - ru ID - BGUMI_2022_1_a6 ER -
S. V. Agievich. An upper bound on binomial coefficients in the de Moivre – Laplace form. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 66-74. http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a6/
[1] A. M. Odlyzko, “Asymptotic enumeration methods”, Handbook of combinatorics, Elsevier, Amsterdam, 1995, 1063–1229 | MR
[2] F. J. MacWilliams, NJA. Sloane, The theory of error-correcting codes, North-Holland Mathematical Library, 16, North-Holland, Amsterdam, 1978, xx+762 pp. | MR
[3] T. Szabados, A simple wide range approximation of symmetric binomial distributions, 2016, 6 pp., arXiv: 1612.01112
[4] O. S. Rothaus, “On «bent» functions”, Journal of Combinatorial Theory, 20:3 (1976), 300–305 | DOI | MR | Zbl
[5] S. V. Agievich, “O prodolzhenii do bent-funktsii i otsenke sverkhu ikh chisla”, Prikladnaya diskretnaya matematika. Prilozhenie, 13 (2020), 18–21 | DOI
[6] S. Agievich, “On the representation of bent functions by bent rectangles”, Probabilistic methods in discrete mathematics, Proceedings of the Fifth International Petrozavodsk conference (Petrozavodsk, Russia), VSP, Utrecht, 2002, 121–135
[7] S. Agievich, “Bent rectangles”, Boolean functions in cryptology and information security, Proceedings of the NATO Advanced Study Institute (Zvenigorod, Russia), NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 18, IOS Press, Amsterdam, 2008, 3–22 | MR
[8] R. Takloo-Bighash, A Pythagorean introduction to number theory. Right triangles, sums of squares, and arithmetic, Springer, Cham, 2018, XVIII+279 pp. | MR