An upper bound on binomial coefficients in the de Moivre – Laplace form
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 66-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent functions, investigate dependencies into the Walsh – Hadamard spectra, obtain restrictions on the number of representations as sums of squares of integers bounded in magnitude.
Mots-clés : binomial coefficient; de Moivre – Laplace theorem; Walsh – Hadamard spectrum; bent function; sum of squares representation.
@article{BGUMI_2022_1_a6,
     author = {S. V. Agievich},
     title = {An upper bound on binomial coefficients in the de {Moivre} {\textendash} {Laplace} form},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {66--74},
     publisher = {mathdoc},
     volume = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a6/}
}
TY  - JOUR
AU  - S. V. Agievich
TI  - An upper bound on binomial coefficients in the de Moivre – Laplace form
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 66
EP  - 74
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a6/
LA  - ru
ID  - BGUMI_2022_1_a6
ER  - 
%0 Journal Article
%A S. V. Agievich
%T An upper bound on binomial coefficients in the de Moivre – Laplace form
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 66-74
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a6/
%G ru
%F BGUMI_2022_1_a6
S. V. Agievich. An upper bound on binomial coefficients in the de Moivre – Laplace form. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 66-74. http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a6/

[1] A. M. Odlyzko, “Asymptotic enumeration methods”, Handbook of combinatorics, Elsevier, Amsterdam, 1995, 1063–1229 | MR

[2] F. J. MacWilliams, NJA. Sloane, The theory of error-correcting codes, North-Holland Mathematical Library, 16, North-Holland, Amsterdam, 1978, xx+762 pp. | MR

[3] T. Szabados, A simple wide range approximation of symmetric binomial distributions, 2016, 6 pp., arXiv: 1612.01112

[4] O. S. Rothaus, “On «bent» functions”, Journal of Combinatorial Theory, 20:3 (1976), 300–305 | DOI | MR | Zbl

[5] S. V. Agievich, “O prodolzhenii do bent-funktsii i otsenke sverkhu ikh chisla”, Prikladnaya diskretnaya matematika. Prilozhenie, 13 (2020), 18–21 | DOI

[6] S. Agievich, “On the representation of bent functions by bent rectangles”, Probabilistic methods in discrete mathematics, Proceedings of the Fifth International Petrozavodsk conference (Petrozavodsk, Russia), VSP, Utrecht, 2002, 121–135

[7] S. Agievich, “Bent rectangles”, Boolean functions in cryptology and information security, Proceedings of the NATO Advanced Study Institute (Zvenigorod, Russia), NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 18, IOS Press, Amsterdam, 2008, 3–22 | MR

[8] R. Takloo-Bighash, A Pythagorean introduction to number theory. Right triangles, sums of squares, and arithmetic, Springer, Cham, 2018, XVIII+279 pp. | MR