The Marshall – Olkin Teissier generated model for lifetime data
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 46-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

An accurate mathematical inference depends on the experimental design and the model adopted in the process. Thus, in this study Marshall – Olkin Teissier generated distribution was used to present the distribution of the true nature of lifetime data. The characteristics of the proposed model were examined in a closed form. The behaviour of the new model indicated that the hazard rate of the submodels could be $J$- and $U$-shaped, decreasing and increasing. Monte Carlo simulations were presented for different configurations of parameters with varying sizes. The results of the simulation and goodness-of-fit of the real lifetime data show that the Marshall – Olkin Teissier generated model is flexible, tractable and applicable when compared to some classical two parameters distributions.
Keywords: Gompertz distribution; Marshall – Olkin distribution; Teissier generated distributions; Teissier distribution.
@article{BGUMI_2022_1_a5,
     author = {J. T. Eghwerido},
     title = {The {Marshall} {\textendash} {Olkin} {Teissier} generated model for lifetime data},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {46--65},
     publisher = {mathdoc},
     volume = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a5/}
}
TY  - JOUR
AU  - J. T. Eghwerido
TI  - The Marshall – Olkin Teissier generated model for lifetime data
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 46
EP  - 65
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a5/
LA  - en
ID  - BGUMI_2022_1_a5
ER  - 
%0 Journal Article
%A J. T. Eghwerido
%T The Marshall – Olkin Teissier generated model for lifetime data
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 46-65
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a5/
%G en
%F BGUMI_2022_1_a5
J. T. Eghwerido. The Marshall – Olkin Teissier generated model for lifetime data. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 46-65. http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a5/

[1] A. G. Laurent, “Failure and mortality from wear and ageing: The Teissier model”, A modern course on statistical distributions in scientific work, Springer, Dordrecht, 1975 | DOI | MR

[2] J. T. Eghwerido, L. C. Nzei, F. I. Agu, “The alpha power Gompertz distribution: characterization, properties and applications”, Sankhya A. The Indian Journal of Statistics, 83:1 (2021), 449–475 | DOI | MR | Zbl

[3] J. T. Eghwerido, F. I. Agu, “The shifted Gompertz-G family of distributions: properties and applications”, Mathematica Slovaca, 71:5 (2021), 1291–1308 | DOI | MR | Zbl

[4] A. M. Sarhan, D. Kundu, “Generalized linear failure rate distribution”, Communications in Statistics. Theory and Methods, 38:5 (2009), 642–660 | DOI | MR | Zbl

[5] A. W. Marshall, I. Olkin, “A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families”, Biometrika, 84:3 (1997), 641–652 | DOI | MR | Zbl

[6] A. Alzaatreh, C. Lee, F. Famoye, “A new method for generating families of continuous distributions”, Metron, 71:1 (2013), 63–79 | DOI | MR | Zbl

[7] J. T. Eghwerido, P. E. Oguntunde, F. I. Agu, “The alpha power Marshall – Olkin-G distribution: properties and applications”, Sankhya A. The Indian Journal of Statistics, 2021 | DOI | MR

[8] M. E. Ghitany, F. A. Al-Awadhi, L. A. Alkhalfan, “Marshall – Olkin extended Lomax distribution and its application to censored data”, Communication in Statistics. Theory and Methods, 36:10 (2007), 1855–1866 | DOI | MR | Zbl

[9] M. E. Ghitany, E. K. Al-Hussaini, R. A. AL-Jarallah, “Marshall – Olkin extended Weibull distribution and its application to censored data”, Journal of Applied Statistics, 32:10 (2005), 1025–1034 | DOI | MR | Zbl

[10] M. E. Ghitany, “Marshall – Olkin extended Parento distribution and its application”, International Journal of Applied Mathematics, 18 (2005), 17–32 | MR

[11] M. M. Ristic, K. K. Jose, J. Ancy, “A Marshall – Olkin gamma distribution and manification process”, Stress and Anxiety Research Society, 11 (2007), 107–117

[12] E. M. Almetwally, MAH. Sabry, R. Alharbi, D. Alnagar, ShAM. Mubarak, E. H. Hafez, “Marshall – Olkin alpha power Weibull distribution: different methods of estimation based on type I and type II censoring”, Complexity, 2021(1) (2021), 5533799 | DOI

[13] M. Nassar, D. Kumar, S. Dey, G. M. Cordeiro, A. Z. Afify, “The Marshall – Olkin alpha power family of distributions with applications”, Journal of Computation and Applied Mathematics, 351 (2019), 41–53 | DOI | MR | Zbl

[14] L. Benkhelifa, “The Marshall – Olkin extended generalized Lindley distribution: properties and application”, Communications in Statistics. Simulation and Computation, 46:10 (2017), 8306–8330 | DOI | MR | Zbl

[15] M. Mansoor, M. H. Tahir, G. M. Cordeiro, S. B. Provost, A. Alzaatreh, “The Marshall – Olkin logistic exponential distribution”, Communications in Statistics. Theory and Methods, 48:2 (2019), 220–234 | DOI | MR | Zbl

[16] J. T. Eghwerido, “The alpha power Teissier distribution and its applications”, Afrika Statistika, 16:2 (2021), 2731–2744 | DOI | MR

[17] G. Teissier, “Recherches sur le vieillissement et sur les lois de mortalite”, Annales de Physiologie et de Physicochimie Biologique, 10:1 (1934), 237–284

[18] V. K. Sharma, S. V. Singh, K. Shekhawat, “Exponentiated Teissier distribution with increasing, decreasing and bathtub hazard functions”, Journal of Applied Statistics, 49:2 (2022), 371–393 | DOI | MR | Zbl

[19] N. Kolev, N. Ngoc, Y. T. Ju, “Bivariate Teissier distributions”, Analytical and Computational Methods in Probability Theory, Springer, Cham, 2017, 279–290 | DOI

[20] R Core Team R: a language and environment for statistical computing, R Foundation for Statistical Computing, 2019 https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=2631126

[21] K. Cooray, MMA. Ananda, “A generalization of the half-normal distribution with applications to lifetime data”, Communications in Statistics. Theory and Methods, 37:9 (2008), 1323–1337 | DOI | MR | Zbl

[22] P. F. Paranaiba, EMM. Ortega, G. M. Cordeiro, MAR. de-Pascoa, “The Kumaraswamy Burr XII distribution: theory and practice”, Journal of Statistical Computation and Simulation, 83:11 (2013), 2117–2143 | DOI | MR | Zbl

[23] Y. M. Gomez, H. Bolfarine, H. W. Gomez, “A new extension of the exponential distribution”, Revista Colombiana de Estadistica, 37:1 (2014), 25–34 | DOI | MR | Zbl

[24] M. Alizadeh, SMTK. MirMostafaee, I. Ghosh, “A new extension of power Lindley distribution for analyzing bimodal data”, Chilean Journal of Statistics, 8:1 (2017), 67–86 | MR | Zbl

[25] J. T. Eghwerido, L. C. Nzei, A. E. Omotoye, F. I. Agu, “The Teissier-G family of distributions: properties and applications”, Mathematica, 2022 | MR | Zbl

[26] K. Xu, M. Xie, L. C. Tang, S. L. Ho, “Application of neural networks in forecasting engine systems reliability”, Applied Soft Computing, 2:4 (2003), 255–268 | DOI

[27] A. Z. Afify, E. Altun, M. Alizadeh, G. Ozel, G. G. Hamedani, “The odd exponentiated half-logistic-G family: properties, characterizations and applications”, Chilean Journal of Statistics, 8:2 (2017), 65–91 | MR | Zbl

[28] P. S. Mann, Introductory statistics, 9th ed., Wiley, New York, 2016, 640 pp.