Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2022_1_a4, author = {A. O. Zadorozhnuyk}, title = {Monotonicity of random walks' states on finite grids}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {38--45}, publisher = {mathdoc}, volume = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a4/} }
TY - JOUR AU - A. O. Zadorozhnuyk TI - Monotonicity of random walks' states on finite grids JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2022 SP - 38 EP - 45 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a4/ LA - ru ID - BGUMI_2022_1_a4 ER -
A. O. Zadorozhnuyk. Monotonicity of random walks' states on finite grids. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 38-45. http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a4/
[1] U. von-Luxburg, A. Radl, M. Hein, “Hitting and commute times in large random neighborhood graphs”, Journal of Machine Learning Research, 15:1 (2014), 1751–1798 | MR | Zbl
[2] T. Sauerwald, Randomized protocols for information dissemination, dissertation, University of Padeborn, Padeborn, 2008, 146 pp.
[3] M. M. Vaskovskii, A. O. Zadorozhnyuk, “Asimptoticheskoe povedenie rezistornykh rasstoyanii v grafakh Keli”, Doklady Natsionalnoi akademii nauk Belarusi, 62:2 (2018), 140–146 | DOI | MR
[4] M. Vaskouski, A. Zadorozhnyuk, “Resistance distances in Cayley graphs on symmetric groups”, Discrete Applied Mathematics, 227 (2017), 121–135 | DOI | MR | Zbl
[5] M. Bernstein, Likelihood orders for some random walks on the symmetric group, 2014, 34 pp., arXiv: 1306.5008v2 | MR | Zbl
[6] G. White, The weak Bruhat order for random walks on Coxeter groups, 2016, 9 pp., arXiv: 1611.04098v1
[7] R. B. Bapat, I. Gutman, W. Xiao, “A simple method for computing resistance distance”, Zeitschrift fur Naturforschung A, 58:9–10 (2003), 494–498 | DOI
[8] Q. Li, S. Li, L. Zhang, “Two-point resistances in the generalized phenylenes”, Journal of Mathematical Chemistry, 58:9 (2020), 1846–1873 | DOI | MR | Zbl
[9] M. S. Sardar, X-F. Pan, S-A. Xu, “Computation of resistance distance and Kirchhoff index of the two classes of silicate networks”, Applied Mathematics and Computation, 381 (2020), 125283 | DOI | MR | Zbl
[10] B. Bollobás, G. Brightwell, “Random walks and electrical resistances in products of graphs”, Discrete Applied Mathematics, 73:1 (1997), 69–79 | DOI | MR | Zbl