The birational composition of arbitrary quadratic form with binary quadratic form
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 14-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathit{f}(X)$ and $\mathit{g}(Y)$ be non-degenerate quadratic forms of dimensions $m$ and $n$ respectively over a field $K$, $charK \neq 2$. Herein, the problem of the birational composition of $\mathit{f}(X)$ and $\mathit{g}(Y)$ is considered, namely, the condition is established when the product $\mathit{f}(X) ~\mathit{g}(Y)$ is birationally equivalent over $K$ to a quadratic form $\mathit{h}(Z)$ over $K$ of dimension $m + n$? The main result of this paper is the complete solution of the problem of the birational composition for quadratic forms $\mathit{f}(X)$ and $\mathit{g}(Y)$ over a field $K$ when $m = 2$. The sufficient and necessary conditions for the existence of birational composition $\mathit{h}(Z)$ for quadratic forms $\mathit{f}(X)$ and $\mathit{g}(Y)$ over a field $K$ for $m = 2$ are obtained. The set of quadratic forms is described which can be considered as $\mathit{h}(Z)$ in this case.
Mots-clés : quadratic form; birational equivalence; birational composition.
@article{BGUMI_2022_1_a1,
     author = {A. A. Bondarenko},
     title = {The birational composition of arbitrary quadratic form with binary quadratic form},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {14--20},
     publisher = {mathdoc},
     volume = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a1/}
}
TY  - JOUR
AU  - A. A. Bondarenko
TI  - The birational composition of arbitrary quadratic form with binary quadratic form
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 14
EP  - 20
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a1/
LA  - ru
ID  - BGUMI_2022_1_a1
ER  - 
%0 Journal Article
%A A. A. Bondarenko
%T The birational composition of arbitrary quadratic form with binary quadratic form
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 14-20
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a1/
%G ru
%F BGUMI_2022_1_a1
A. A. Bondarenko. The birational composition of arbitrary quadratic form with binary quadratic form. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 14-20. http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a1/

[1] A. Hurwitz, “Uber die Komposition der quadratischen Formen”, Mathematische Annalen, 88:1–2 (1922), 1–25 | DOI | MR | Zbl

[2] J. Radon, “Lineare Scharen orthogonaler Matrizen”, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 1:1 (1922), 1–14 | DOI | MR

[3] K. Y. Lam, “Topological methods for studying the composition of quadratic forms”, Quadratic and Hermitian forms, Conference on quadratic forms and Hermitian K-theory (McMaster University, Hamilton, Ontario, Canada), v. 4, American Mathematical Society, Providence, 1984, 173–192 | MR

[4] A. Pfister, “Multiplikative quadratische Formen”, Archiv der Mathematic, 16:1 (1965), 363–370 | DOI | MR | Zbl

[5] A. A. Bondarenko, “O biratsionalnoi kompozitsii kvadratichnykh form”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 4 (2007), 56–61

[6] A. A. Bondarenko, “Biratsionalnaya kompozitsiya kvadratichnykh form nad lokalnym polem”, Matematicheskie zametki, 85:5 (2009), 661–670 | DOI | Zbl

[7] A. A. Bondarenko, “Biratsionalnaya kompozitsiya kvadratichnykh form nad konechnym polem”, Vestnik BGU. Fizika. Matematika. Informatika, 3 (2010), 90–93 | Zbl

[8] A. A. Bondarenko, “Biratsionalnaya kompozitsiya kvadratichnykh form nad polem funktsii”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya fiziko-matematicheskikh nauk, 3 (2014), 28–32

[9] A. A. Bondarenko, “Biratsionalnaya kompozitsiya ternarnykh kvadratichnykh form”, Vestnik BGU. Fizika. Matematika. Informatika, 2 (2012), 106–110 | Zbl

[10] Zh-P. Serr, Kurs arifmetiki, Mir, Moskva, 1972, 184 | MR

[11] M. Knebusch, W. Scharlau, Algebraic theory of quadratic forms. Generic methods and Pfister forms, Birkhauser, Boston, 1980 | MR