On associated solutions of the system of non-autonomous differential equations in the Lebesgue spaces
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 6-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Herein, we investigate systems of non-autonomous differential equations with generalised coefficients using the algebra of new generalised functions. We consider a system of non-autonomous differential equations with generalised coefficients as a system of equations in differentials in the algebra of new generalised functions. The solution of such a system is a new generalised function. It is shown that the different interpretations of the solutions of the given systems can be described by a unique approach of the algebra of new generalised functions. In this paper, for the first time in the literature, we describe associated solutions of the system of non-autonomous differential equations with generalised coefficients in the Lebesgue spaces $L_{P}(T)$.
Keywords: algebra of new generalised functions; differential equations with generalised coefficients; functions of finite variation.
@article{BGUMI_2022_1_a0,
     author = {A. I. Zhuk and H. Zashchuk},
     title = {On associated solutions of the system of non-autonomous differential equations in the {Lebesgue} spaces},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {6--13},
     publisher = {mathdoc},
     volume = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a0/}
}
TY  - JOUR
AU  - A. I. Zhuk
AU  - H. Zashchuk
TI  - On associated solutions of the system of non-autonomous differential equations in the Lebesgue spaces
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2022
SP  - 6
EP  - 13
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a0/
LA  - en
ID  - BGUMI_2022_1_a0
ER  - 
%0 Journal Article
%A A. I. Zhuk
%A H. Zashchuk
%T On associated solutions of the system of non-autonomous differential equations in the Lebesgue spaces
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2022
%P 6-13
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a0/
%G en
%F BGUMI_2022_1_a0
A. I. Zhuk; H. Zashchuk. On associated solutions of the system of non-autonomous differential equations in the Lebesgue spaces. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2022), pp. 6-13. http://geodesic.mathdoc.fr/item/BGUMI_2022_1_a0/

[1] P. Antosik, J. Legeza, “Products of measures and functions of finite variations”, Proceedings of the International conference on generalized functions and operational calculus (Varna, Bulgaria), Bulgarian Academy of Science, Sophia, 1979, 20–26 | MR

[2] P. C. Das, R. R. Sharma, “Existence and stability of measure differential equations”, Czechoslovak Mathematical Journal, 22:1 (1972), 145–158 | DOI | MR | Zbl

[3] J. Ligeza, “On generalized solutions of some differential nonlinear equations of order n”, Annales Polonici Mathematici, 31:2 (1975), 115–120 | DOI | MR | Zbl

[4] S. T. Zavalishchin, A. N. Sesekin, Dynamic impulse systems: theory and applications, Mathematics and Its Applications, 394, Kluwer Academic Publishers, Dordrecht, 1997, 271 | MR

[5] S. G. Pandit, S. G. Deo, Differential systems involving impulses, Lecture Notes in Mathematics, 954, Springer, Berlin, 1982, 106 | DOI | MR

[6] N. V. Lazakovich, “Stokhasticheskie differentsialy v algebre obobschennykh sluchainykh protsessov”, Doklady akademii nauk Belarusi, 38:5 (1994), 23–27 | MR | Zbl

[7] T. I. Karimova, O. L. Yablonskii, “Ob assotsiirovannykh resheniyakh nestatsionarnykh sistem uravnenii v differentsialakh v algebre obobschennykh sluchainykh protsessov”, Vestnik BGU. Fizika. Matematika. Informatika, 2 (2009), 81–86 | MR | Zbl

[8] A. I. Zhuk, O. L. Yablonskii, S. A. Spaskov, “Assotsiirovannye resheniya sistemy neavtonomnykh differentsialnykh uravnenii s obobschennymi koeffitsientami. Smeshannyi sluchai”, Vestsi BDPU. Fizika. Matematyka. Infarmatyka. Biyalogiya. Geagrafiya, 4 (2019), 16–22

[9] A. I. Zhuk, O. L. Yablonskii, “Sistemy differentsialnykh uravnenii v algebre obobschennykh funktsii”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 1 (2011), 12–16

[10] A. I. Zhuk, O. L. Yablonskii, “Neavtonomnye sistemy differentsialnykh uravnenii v algebre obobschennykh funktsii”, Trudy Instituta matematiki, 19:1 (2011), 43–51 | Zbl

[11] A. I. Zhuk, O. L. Yablonskii, “Otsenki skorosti skhodimosti k assotsiirovannym resheniyam differentsialnykh uravnenii s obobschennymi koeffitsientami v algebre mnemofunktsii”, Doklady Natsionalnoi akademii nauk Belarusi, 59:2 (2015), 17–22 | Zbl

[12] A. I. Zhuk, A. K. Khmyzov, “Sistemy kvazidifferentsialnykh uravnenii v pryamom proizvedenii algebr mnemofunktsii. Simmetricheskii sluchai”, Vestnik BGU. Fizika. Matematika. Informatika, 2 (2010), 87–93 | Zbl