Contribution of Jonas Kubilius to the metric theory of diophantine approximation of dependent variables
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2021), pp. 34-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the latest results in metric theory of Diophantine approximation. One of the first major result in area of number theory was a theorem by academician Jonas Kubilius. This paper is dedicated to centenary of his birth. Over the last 70 years, the area of Diophantine approximation yielded a number of significant results by great mathematicians, including Fields prize winners Alan Baker and Grigori Margulis. In 1964 academician of the Academy of Sciences of BSSR Vladimir Sprindžuk, who was a pupil of academician J. Kubilius, solved the well-known Mahler’s conjecture on the measure of the set of S-numbers under Mahler’s classification, thus becoming the founder of the Belarusian academic school of number theory in 1962.
Keywords: J. Kubilius; Diophantine approximation; Mahler’s conjecture; metric number theory; transcendence and algebraic numbers.
@article{BGUMI_2021_3_a2,
     author = {V. V. Beresnevich and V. I. Bernik and F. G\"otze and E. V. Zasimovich and N. I. Kalosha},
     title = {Contribution of {Jonas} {Kubilius} to the metric theory of diophantine approximation of dependent variables},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {34--50},
     year = {2021},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a2/}
}
TY  - JOUR
AU  - V. V. Beresnevich
AU  - V. I. Bernik
AU  - F. Götze
AU  - E. V. Zasimovich
AU  - N. I. Kalosha
TI  - Contribution of Jonas Kubilius to the metric theory of diophantine approximation of dependent variables
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 34
EP  - 50
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a2/
LA  - en
ID  - BGUMI_2021_3_a2
ER  - 
%0 Journal Article
%A V. V. Beresnevich
%A V. I. Bernik
%A F. Götze
%A E. V. Zasimovich
%A N. I. Kalosha
%T Contribution of Jonas Kubilius to the metric theory of diophantine approximation of dependent variables
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 34-50
%V 3
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a2/
%G en
%F BGUMI_2021_3_a2
V. V. Beresnevich; V. I. Bernik; F. Götze; E. V. Zasimovich; N. I. Kalosha. Contribution of Jonas Kubilius to the metric theory of diophantine approximation of dependent variables. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2021), pp. 34-50. http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a2/

[1] I. P. Kubilyus, “O primenenii metoda akademika Vinogradova k resheniyu odnoi zadachi metricheskoi teorii chisel”, Doklady Akademii nauk SSSR, 67 (1949), 783–786 | MR | Zbl

[2] I. P. Kubilyus, “Ob odnoi metricheskoi probleme teorii diofantovykh priblizhenii”, Doklady Akademii nauk Litovskoi SSR, 2 (1959), 3–7

[3] V. G. Sprindzhuk, “Dokazatelstvo gipotezy Malera o mere mnozhestva S-chisel”, Izvestiya Akademii nauk SSSR, 29(2) (1965), 379–436 | Zbl

[4] V. G. Sprindzhuk, “Problema Malera v metricheskoi teorii chisel”, Nauka i tekhnika, Minsk, 1967, 181 | MR

[5] V. G. Sprindzhuk, “Dostizheniya i problemy teorii diofantovykh priblizhenii”, Uspekhi matematicheskikh nauk, 35(4) (1980), 3–68 | Zbl

[6] M. E. Borel, “Les probabilites denombrables et leurs applications arithmetiques”, Rendiconti del Circolo Matematico di Palermo (1884–1940), 27 (1909), 247–271 | DOI | Zbl

[7] A. Khintchine, “Einige Satze uber Kettenbruche, mit Anwendungen auf die Theorie der diophantischen Approximationen”, Mathematische Annalen, 92 (1924), 115–125 | DOI | MR | Zbl

[8] A. V. Groshev, “Teorema o sisteme lineinykh form”, Doklady Akademii nauk SSSR, 19 (1938), 151–152

[9] G. Harman, Metric Number Theory, London Mathematical Society monographs, 18, Clarendon Press, Oxford, 1998 | MR | Zbl

[10] JWS. Cassels, An introduction to Diophantine approximation, Cambridge tracts in mathematics and mathematical physics, Cambridge University Press, Cambridge, 1957 | MR

[11] V. G. Sprindzuk, “Mahler’s problem in metric number theory”, Translations of mathematical monographs, 25, American Mathematical Society, Providence, 1969, 192 | MR

[12] A. Khintchine, “Zwei Bemerkungen zu einer Arbeit des Herrn Perron”, Mathematische Zeitschrift, 22 (1925), 274–284 | DOI | MR | Zbl

[13] K. Mahler, “Uber das Mab der Menge aller S-Zahlen”, Mathematische Annalen, 106 (1932), 131–139 | DOI | MR

[14] W. M. Schmidt, “Bounds for certain sums; a remark on a conjecture of Mahler”, Transactions of the American Mathematical Society, 101(2) (1961), 200–210 | DOI | MR | Zbl

[15] Y. Bugeaud, “Approximation by algebraic numbers”, Cambridge tracts in mathematics, 160, Cambridge University Press, Cambridge, 2004, 290 | DOI | MR

[16] J. F. Koksma, “Uber die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen”, Monatshefte fur Mathematik, 48(1) (1939), 176–189 | DOI | MR

[17] W. J. LeVeque, “Note on S-numbers”, Proceedings of the American Mathematical Society, 4 (1953), 189–190 | DOI | MR | Zbl

[18] F. Kasch, B. Volkmann, “Zur Mahlerschen Vermutung ber S-Zahlen”, Mathematische Annalen, 136(5) (1958), 442–453 | DOI | MR | Zbl

[19] W. M. Schmidt, “Metrische Satze uber simultane Approximation abhangiger Groben”, Monatshefte fur Mathematik, 68(2) (1964), 154–166 | DOI | MR | Zbl

[20] B. Volkmann, “The real cubic case of Mahler’s conjecture”, Mathematika, 8(1) (1961), 55–57 | DOI | MR | Zbl

[21] H. Davenport, “A note on binary cubic forms”, Mathematika, 8(1) (1961), 58–62 | DOI | MR | Zbl

[22] V. Bernik, F. Gotze, A. Gusakova, “On points with algebraically conjugate coordinates close to smooth curves”, Zapiski nauchnykh seminarov POMI, 448 (2016), 14–47 | MR

[23] JWS. Cassels, “Some metrical theorems in Diophantine approximation: v on a conjecture of Mahler”, Mathematical Proceedings of the Cambridge Philosophical Society, 47(1) (1951), 18–21 | DOI | MR

[24] A. Baker, W. M. Schmidt, “Diophantine approximation and Hausdorff dimension”, Proceedings of the London Mathematical Society, s3-21(1) (1970), 1–11 | DOI | MR | Zbl

[25] V. Bernik, “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arithmetica, 53(1) (1989–1990), 17–28 | DOI | Zbl

[26] V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arithmetica, 90(2) (1999), 97–112 | DOI | MR | Zbl

[27] V. Beresnevich, “On a theorem of V Bernik in the metric theory of Diophantine approximation”, Acta Arithmetica, 117(1) (2005), 71–80 | DOI | MR | Zbl

[28] V. I. Bernik, D. V. Vasilev, “Teorema tipa Khinchina dlya tselochislennykh mnogochlenov kompleksnoi peremennoi”, Trudy Instituta matematiki NAN Belarusi, 3 (1999), 10–20 | Zbl

[29] V. V. Beresnevich, V. I. Bernik, E. I. Kovalevskaya, “On approximation of p-adic numbers by p-adic algebraic numbers”, Journal of Number Theory, 111(1) (2005), 33–56 | DOI | MR | Zbl

[30] A. Mohammadi, A. S. Golsefidy, “S-arithmetic Khintchine-type theorem”, Geometric and Functional Analysis, 19(4) (2009), 1147–1170 | DOI | MR | Zbl

[31] F. Adiceam, V. Beresnevich, J. Levesley, S. Velani, E. Zorin, “Diophantine approximation and applications in interference alignment”, Advances in Mathematics, 302 (2016), 231–279 | DOI | MR | Zbl

[32] V. I. Bernik, N. V. Shamukova, “Priblizhenie deistvitelnykh chisel tselymi algebraicheskimi chislami i teorema Khinchina”, Doklady Natsionalnoi akademii nauk Belarusi, 50(3) (2006), 30–32 | Zbl

[33] V. I. Bernik, M. M. Dodson, “Metric Diophantine approximation on manifolds”, Cambridge tracts in mathematics, 137, Cambridge University Press, Cambridge, 1999, 172 | MR | Zbl

[34] V. Beresnevich, V. Bernik, “On a metrical theorem of W Schmidt”, Acta Arithmetica, 75(3) (1996), 219–233 | DOI | MR | Zbl

[35] D. Y. Kleinbock, G. A. Margulis, “Flows on homogeneous spaces and Diophantine approximation on manifolds”, Annals of Mathematics, 148(1) (1998), 339–360 | DOI | MR | Zbl

[36] V. Beresnevich, “A Groshev type theorem for convergence on manifolds”, Acta Mathematica Hungarica, 94(1–2) (2002), 99–130 | DOI | MR | Zbl

[37] V. Bernik, D. Kleinbock, G. Margulis, “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, International Mathematics Research Notices, 2001(9) (2001), 453–486 | DOI | MR | Zbl

[38] V. V. Beresnevich, V. I. Bernik, D. Y. Kleinbock, G. A. Margulis, “Metric Diophantine approximation: the Khintchine – Groshev theorem for non-degenerate manifolds”, Moscow Mathematical Journal, 2(2) (2002), 203–225 | DOI | MR | Zbl

[39] A. Baker, “On a theorem of Sprindzuk”, Proceedings of the Royal Society of London, Mathematical and Physical Sciences, 292(1428), 1966, 92–104 | DOI | Zbl

[40] J. F. Koksma, “Diophantische approximationen”, Ergebnisse der Mathematik und ihrer Grenzgebiete, 4, Berlin: Springer, 1974, 172 | DOI | MR

[41] D. Allen, V. Beresnevich, “A mass transference principle for systems of linear forms and its applications”, Compositio Mathematica, 154(5) (2018), 1014–1047 | DOI | MR | Zbl

[42] V. I. Bernik, D. V. Vasilev, E. V. Zasimovich, “Diofantovy priblizheniya s postoyannoi pravoi chastyu neravenstv na korotkikh intervalakh”, Doklady Natsionalnoi akademii nauk Belarusi, 65(4) (2021), 397–403 | DOI

[43] V. Jarnik, “Diophantische approximationen und Hausdorffsches mass”, Matematicheskii sbornik', 36(3–4) (1929), 371–382 | Zbl

[44] A. S. Besicovitch, “Sets of fractional dimensions (IV): on rational approximation to real numbers”, Journal of the London Mathematical Society, s1-9(2) (1934), 126–131 | DOI | MR

[45] V. I. Bernik, “Primenenie razmernosti Khausdorfa v teorii diofantovykh priblizhenii”, Acta Arithmetica, 42 (1983), 219–253 | DOI | Zbl

[46] Yu. V. Melnichuk, “Diofantovy priblizheniya na okruzhnosti i razmernost Khausdorfa”, Matematicheskie zametki, 26(3) (1979), 347–354

[47] V. I. Bernik, I. L. Morotskaya, “Diofantovy priblizheniya v Q (s ind. p) i razmernost Khausdorfa”, Vestsi Natsyyanalnai akademii navuk Belarusi, 3 (1986), 3–9 | MR | Zbl

[48] V. I. Bernik, N. I. Kalosha, “Priblizhenie nulya znacheniyami tselochislennykh polinomov v prostranstve R * C * Q (s ind. p)”, Vestsi Natsyyanalnai akademii navuk Belarusi, 1 (2004), 121–123

[49] N. V. Budarina, “Metricheskaya teoriya sovmestnykh diofantovykh priblizhenii v R(v step. k)*C*Q(v step l, s ind. p)”, Chebyshevskii sbornik. Posvyaschaetsya 65-i godovschine so dnya rozhdeniya professora Sergeya Mikhailovicha Voronina, 12(1) (2011), 17–50 | Zbl

[50] D. Badziahin, J. Schleischitz, “An improved bound in Wirsing’s problem”, Transactions of the American Mathematical Society, 374 (2021), 1847–1861 | DOI | MR | Zbl

[51] V. I. Bernik, K. I. Tischenko, “Tselochislennye mnogochleny s perepadami vysot koeffitsientov i gipoteza Virzinga”, Doklady Natsionalnoi akademii nauk Belarusi, 37(5) (1993), 9–11 | Zbl

[52] V. Beresnevich, D. Dickinson, S. Velani, “Diophantine approximation on planar curves and the distribution of rational points”, Annals of Mathematics, 166(2) (2007), 367–426 | DOI | MR | Zbl

[53] H. Dickinson, M. M. Dodson, “Extremal manifolds and Hausdorff dimension”, Duke Mathematical Journal, 101(2) (2000), 271–281 | DOI | MR | Zbl

[54] B. P. Rynne, “Simultaneous Diophantine approximation on manifolds and Hausdorff dimension”, Journal of Number Theory, 98(1) (2003), 1–9 | DOI | MR | Zbl

[55] A. S. Kudin, A. V. Lunevich, “Analog teoremy Khinchina v sluchae raskhodimosti v polyakh deistvitelnykh, kompleksnykh i p-adicheskikh chisel”, Trudy Instituta matematiki, 23(1) (2015), 76–83 | Zbl

[56] V. Beresnevich, E. Zorin, “Explicit bounds for rational points near planar curves and metric Diophantine approximation”, Advances in Mathematics, 225(6) (2010), 3064–3087 | DOI | MR | Zbl

[57] V. Beresnevich, R. C. Vaughan, S. Velani, E. Zorin, “Diophantine approximation on manifolds and the distribution of rational points: contributions to the convergence theory”, International Mathematics Research Notices, 2017(10) (2017), 2885–2908 | DOI | MR | Zbl

[58] J-J. Huang, “The density of rational points near hypersurfaces”, Duke Mathematical Journal, 169(11) (2020), 2045–2077 | DOI | MR | Zbl

[59] D. Simmons, “Some manifolds of Khinchin type for convergence”, Journal de Theorie des Nombres de Bordeaux, 30(1) (2018), 175–193 | DOI | MR | Zbl

[60] V. Beresnevich, S. Velani, “An inhomogeneous transference principle and Diophantine approximation”, Proceedings of the London Mathematical Society, 101(3) (2010), 821–851 | DOI | MR | Zbl

[61] K. Yu. Yavid, “Otsenka razmernosti Khausdorfa mnozhestv singulyarnykh vektorov”, Doklady Akademii nauk BSSR, 31(9) (1987), 777–780 | MR | Zbl

[62] V. Beresnevich, J. Levesley, B. Ward, “A lower bound for the Hausdorff dimension of the set of weighted simultaneously approximable points over manifolds”, International Journal of Number Theory, 17(8) (2021), 1795–1814 | DOI | MR | Zbl

[63] V. I. Bernik, “Applications of measure theory and Hausdorff dimension to the theory of Diophantine approximation”, New advances in transcendence theory, 1988, 25–36 | DOI | MR | Zbl

[64] V. I. Bernik, “Primenenie razmernosti Khausdorfa v teorii diofantovykh priblizhenii”, Acta Arithmetica, 42 (1983), 219–253 | DOI | Zbl

[65] V. Beresnevich, L. Lee, R. C. Vaughan, S. Velani, “Diophantine approximation on manifolds and lower bounds for Hausdorff dimension”, Mathematika, 63(3) (2017), 762–779 | DOI | MR | Zbl

[66] V. I. Bernik, N. A. Pereverseva, “The method of trigonometric sums and lower estimates of Hausdorff dimension”, Analytic and Probabilistic Methods in Number Theory, 2 (1992), 75–81 | DOI | MR | Zbl

[67] Y. Bugeaud, “Approximation by algebraic integers and Hausdorff dimension”, Journal of the London Mathematical Society, 65(3) (2002), 547–559 | DOI | MR | Zbl

[68] V. V. Beresnevich, S. L. Velani, “A note on simultaneous Diophantine approximation on planar curves”, Mathematische Annalen, 337(4) (2007), 769–796 | DOI | MR | Zbl

[69] V. V. Beresnevich, “Primenenie ponyatiya regulyarnykh sistem tochek v metricheskoi teorii chisel”, Vestsi Natsyyanalnai akademii navuk Belarusi, 1 (2000), 35–39

[70] V. V. Beresnevich, “O postroenii regulyarnykh sistem tochek s veschestvennymi, kompleksnymi i p-adicheskimi algebraicheskimi koordinatami”, Vestsi Natsyyanalnai akademii navuk Belarusi, 1 (2003), 22–27

[71] E. I. Kovalevskaya, V. Bernik, “Simultaneous inhomogeneous Diophantine approximation of the values of integral polynomials with respect to Archimedean and non-Archimedean valuations”, Acta Mathematica Universitatis Ostraviensis, 14(1) (2006), 37–42 | MR | Zbl

[72] V. І. Bernik, І. M. Marozava, “Gipoteza Beikera i regulyarnyya sistemy algebraichnykh lichbau z abmezhavannem na znachenne vytvornai”, Vestsi Natsyyanalnai akademii navuk Belarusi, 3 (1996), 109–113 | Zbl

[73] D. Kleinbock, G. Tomanov, “Flows on S-arithmetic homogeneous spaces and applications to metric Diophantine approximation”, Commentarii Mathematici Helvetici, 82(3) (2007), 519–581 | DOI | MR | Zbl

[74] V. I. Bernik, N. V. Sakovich, “Regulyarnye sistemy kompleksnykh algebraicheskikh chisel”, Doklady Akademii nauk Belarusi, 38(5) (1994), 10–13 | MR | Zbl

[75] V. V. Beresnevich, E. I. Kovalevskaya, “O diofantovykh priblizheniyakh zavisimykh velichin v p-adicheskom sluchae”, Matematicheskie zametki, 25(1) (2003), 22–37 | DOI

[76] V. I. Bernik, “Metricheskaya teorema o sovmestnom priblizhenii nulya znacheniyami tselochislennykh mnogochlenov”, Izvestiya Akademii nauk SSSR, 44(1) (1980), 24–45 | Zbl

[77] F. Zeludevic, “Simultane diophantische Approximationen abhangiger Groben in mehreren Metriken”, Acta Arithmetica, 46(3) (1986), 285–296 | DOI | MR

[78] V. Bernik, N. Budarina, D. Dickinson, “A divergent Khintchine theorem in the real, complex, and p-adic fields”, Lithuanian Mathematical Journal, 48(2) (2008), 158–173 | DOI | MR | Zbl

[79] N. Budarina, D. Dickinson, V. Bernik, “Simultaneous Diophantine approximation in the real, complex and p-adic fields”, Mathematical Proceedings of the Cambridge Philosophical Society, 149(2) (2010), 193–216 | DOI | MR | Zbl

[80] I. R. Dombrovskii, “Sovmestnye priblizheniya deistvitelnykh chisel algebraicheskimi chislami ogranichennoi stepeni”, Doklady Akademii nauk BSSR, 33(3) (1989), 205–208

[81] V. Beresnevich, “Rational points near manifolds and metric Diophantine approximation”, Annals of Mathematics, 175(1) (2012), 187–235 | DOI | MR | Zbl

[82] V. V. Beresnevich, S. L. Velani, “Simultaneous inhomogeneous Diophantine approximation on manifolds”, Journal of Mathematical Sciences, 180(5) (2012), 531–541 | DOI | MR | Zbl

[83] N. Budarina, D. Dickinson, J. Levesley, “Simultaneous Diophantine approximation on polynomial curves”, Mathematika, 56(1) (2010), 77–85 | DOI | MR | Zbl

[84] N. Budarina, “On a problem of Bernik, Kleinbock and Margulis”, Glasgow Mathematical Journal, 53(3) (2011), 669–681 | DOI | MR | Zbl

[85] N. Budarina, D. Dickinson, “Simultaneous Diophantine approximation in two metrics and the distance between conjugate algebraic numbers in R*Q (v step. p)”, Indagationes Mathematicae, 23(1–2) (2012), 32–41 | DOI | MR | Zbl

[86] V. I. Bernik, V. N. Borbat, “Sovmestnaya approksimatsiya nulya znacheniyami tselochislennykh polinomov”, Trudy Matematicheskogo instituta imeni VA Steklova, 218 (1997), 58–73 | Zbl

[87] V. I. Bernik, N. Budarina, H. O’Donnell, “On regular systems of real algebraic numbers of third degree in short intervals”, Sovremennye problemy matematiki, 17 (2013), 61–75 | DOI | MR | Zbl

[88] Y. Bugeaud, M. Mignotte, “Polynomes a coefficients entiers prenant des valeurs positives aux points reels”, Bulletin mathematique de la Societe des Sciences Mathematiques de Roumanie, 53(3) (2010), 219–224 | MR

[89] V. Bernik, F. Gotze, “A new connection between metric theory of Diophantine approximations and distribution of algebraic numbers”, Contemporary Mathematics, 631 (2015), 33–45 | DOI | MR | Zbl

[90] N. V. Budarina, “Sovmestnye diofantovy priblizheniya s nemonotonnymi pravymi chastyami”, Doklady Akademii nauk, 437(4) (2011), 441–443 | Zbl

[91] V. Bernik, Guire. Mc, “How small can polynomials be in an interval of given length”, Glasgow Mathematical Journal, 62(2) (2020), 261–280 | DOI | MR | Zbl

[92] Y. Bugeaud, M. Mignotte, “Polynomial root separation”, International Journal of Number Theory, 6(3) (2010), 587–602 | DOI | MR | Zbl

[93] V. Beresnevich, V. Bernik, F. Gotze, “The distribution of close conjugate algebraic numbers”, Compositio Mathematica, 146(5) (2010), 1165–1179 | DOI | MR | Zbl

[94] V. Bernik, N. Budarina, H. O’Donnell, “Discriminants of polynomials in the Archimedean and non-Archimedean metrics”, Acta Mathematica Hungarica, 154(2) (2018), 265–278 | DOI | MR | Zbl

[95] M. N. Huxley, “The rational points close to a curve. Annali della Scuola Normale Superiore di Pisa”, Classe di Scienze, 21(3) (1994), 357–375 | MR | Zbl

[96] D. V. Koleda, “Ob asimptotike raspredeleniya algebraicheskikh chisel pri vozrastanii ikh vysot”, Chebyshevskii sbornik, 16(1) (2015), 191–204 | DOI | MR | Zbl

[97] F. Gotze, D. Koleda, D. Zaporozhets, “Joint distribution of conjugate algebraic numbers: a random polynomial approach”, Advances in Mathematics, 359 (2020), 106849 | DOI | MR | Zbl

[98] V. V. Lebed, V. I. Bernik, “Algebraicheskie tochki na ploskosti”, Fundamentalnaya i prikladnaya matematika, 11(6) (2005), 73–80

[99] D. V. Koleda, “O raspredelenii veschestvennykh algebraicheskikh chisel vtoroi stepeni”, Vestsi Natsyyanalnai akademii navuk Belarusi, 3 (2013), 54–63

[100] D. Koleda, “On the density function of the distribution of real algebraic numbers”, Journal de Theorie des Nombres de Bordeaux, 29(1) (2017), 179–200 | DOI | MR | Zbl

[101] V. I. Bernik, F. Gettse, N. I. Kalosha, “O kolichestve algebraicheskikh chisel v korotkikh intervalakh, soderzhaschikh ratsionalnye tochki”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2019), 4–11 | DOI | Zbl

[102] N. V. Budarina, D. Dikkinson, V. I. Bernik, “Otsenki snizu dlya kolichestva vektorov s algebraicheskimi koordinatami vblizi gladkikh poverkhnostei”, Doklady Natsionalnoi akademii nauk Belarusi, 64(1) (2020), 7–12 | DOI

[103] V. I. Bernik, F. Gotze, “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izvestiya: Mathematics, 79(1) (2015), 18–39 | DOI | MR | Zbl

[104] N. Budarina, D. Dickinson, “Diophantine approximation on non-degenerate curves with non-monotonic error function”, Bulletin of the London Mathematical Society, 41(1) (2009), 137–146 | DOI | MR | Zbl

[105] N. Budarina, “Diophantine approximation on the curves with non-monotonic error function in the p-adic case”, Chebyshevskii sbornik, 11(1) (2010), 74–80 | MR | Zbl

[106] D. Badziahin, V. Beresnevich, S. Velani, “Inhomogeneous theory of dual Diophantine approximation on manifolds”, Advances in Mathematics, 232(1) (2013), 1–35 | DOI | MR | Zbl

[107] D. Badziahin, “Inhomogeneous Diophantine approximation on curves and Hausdorff dimension”, Advances in Mathematics, 223(1) (2010), 329–351 | DOI | MR | Zbl

[108] V. Bernik, H. Dickinson, J. Yuan, “Inhomogeneous Diophantine approximation on polynomials in Q (v step. p)”, Acta Arithmetica, 90(1) (1999), 37–48 | DOI | MR | Zbl

[109] V. Beresnevich, A. Ganguly, A. Ghosh, S. Velani, “Inhomogeneous dual Diophantine approximation on affine subspaces”, International Mathematics Research Notices, 12 (2020), 3582–3613 | DOI | MR | Zbl

[110] V. V. Beresnevich, R. C. Vaughan, S. L. Velani, “Inhomogeneous Diophantine approximation on planar curves”, Mathematische Annalen, 349(4) (2011), 929–942 | DOI | MR | Zbl

[111] V. I. Arnold, “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, Uspekhi matematicheskikh nauk, 18(6) (1963), 91–192 | Zbl

[112] B. I. Ptashnik, “Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi”, Kiev: Naukova dumka, 1984, 264 | MR

[113] V. R. Cadambe, S. A. Jafar, “Interference alignment and degrees of freedom of the K-user interference channel”, IEEE Transactions on Information Theory, 54(8) (2008), 3425–3441 | DOI | MR | Zbl

[114] S. A. Jafar, “Interference alignment: a new look at signal dimensions in a communication network”, Foundations and Trends in Communications and Information Theory, 7(1) (2011), 1–134 | DOI

[115] S. A. Jafar, S. h. Shamai, “Degrees of freedom region of the MIMO X channel”, IEEE Transactions on Information Theory, 54(1) (2008), 151–170 | DOI | MR | Zbl

[116] V. Beresnevich, S. Velani, “Number theory meets wireless communications: an introduction for dummies like u. Number theory meets wireless communications”, Springer International Publishing, 2020, 1–67 | DOI | MR | Zbl

[117] N. Budarina, H. O’Donnell, “On a problem of Nesterenko: when is the closest root of a polynomial a real number”, International Journal of Number Theory, 8(3) (2012), 801–811 | DOI | MR | Zbl

[118] A. S. Motahari, S. Oveis-Gharan, M. A. Maddah-Ali, A. K. Khandani, “Real interference alignment: exploiting the potential of single antenna systems”, IEEE Transactions on Information Theory, 60(8) (2014), 4799–4810 | DOI | MR | Zbl

[119] R. Slesoraitene, “Teorema Malera – Sprindzhuka dlya polinomov tretei stepeni ot dvukh peremennykh”, Litovskii matematicheskii sbornik, 10 (1970), 791–814 | MR

[120] E. Manstavičius, “Jonas Kubilius 1921–2011”, Lithuanian Mathematical Journal, 61 (2021), 285–288 | DOI | MR | Zbl