Finite groups with given systems of generalised $\sigma$-permutable subgroups
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2021), pp. 25-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma = {\sigma_i | i \in I}$ – be a partition of the set of all primes $\mathbb{P}$ and $G$ – be a finite group. A set $\mathbb{P}$ of subgroups of $G$ is said to be a complete Hall $\sigma$-set of $G$ if every member $\ne 1$ of $\mathcal{H}$ is a Hall $\sigma_i$-subgroup of $G$ for some $i \in I$ and $\mathcal{H}$ contains exactly one Hall $\sigma_i$-subgroup of $G$ for every $i$ such that $\sigma_i\cap\pi(G)\ne\oslash$. A group is said to be $\sigma$-primary if it is a finite $\sigma_i$-group for some $i$. A subgroup $A$ of $G$ is said to be: $\sigma$-permutable in $G$, if $G$ possesses a complete Hall $\sigma$-set $\mathcal{H}$ such that $AH^x = H^xA$ for all $H \in \mathcal{H}$ and all $x \in G$; $\sigma$-subnormal in $G$, if there is a subgroup chain $A = A_0 \leq A_1\leq\ldots\leq A_t = G$ such that either $A_{i-1} \trianglelefteq A_i$, or $A_i/( A_i - 1)_{A_i}$ is $\sigma$-primary for all $i = 1,\ldots, t$; $\mathfrak{U}$-normal in $G$ if every chief factor of $G$ between $A_G$ and $A^G$ is cyclic. We say that a subgroup $H$ of $G$ is: (i) partially $\sigma$-permutable in $G$ if there are $\mathfrak{U}$-normal subgroup $A$ and a $\sigma$-permutable subgroup $B$ of $G$ such that $H = A, B >$; (ii) $(\mathfrak{U}, \sigma)$-embedded in Gif there are a partially $\sigma$-permutable subgroup $S$ and a $\sigma$-subnormal subgroup $T$ of $G$ such that $G = HT$ and $H \cap T \leq S \leq H$. We study $G$ assuming that some subgroups of $G$ are partially $\sigma$-permutable or $(\mathfrak{U}, \sigma)$-embedded in $G$. Some known results are generalised.
Keywords: finite group; $\sigma$-soluble groups; $\sigma$-nilpotent group; partially $\sigma$-permutable subgroup; $(\mathfrak{U}, \sigma)$-embedded sub-group; $\mathfrak{U}$-normal subgroup.
@article{BGUMI_2021_3_a1,
     author = {V. S. Zakrevskaya},
     title = {Finite groups with given systems of generalised $\sigma$-permutable subgroups},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {25--33},
     publisher = {mathdoc},
     volume = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a1/}
}
TY  - JOUR
AU  - V. S. Zakrevskaya
TI  - Finite groups with given systems of generalised $\sigma$-permutable subgroups
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 25
EP  - 33
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a1/
LA  - en
ID  - BGUMI_2021_3_a1
ER  - 
%0 Journal Article
%A V. S. Zakrevskaya
%T Finite groups with given systems of generalised $\sigma$-permutable subgroups
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 25-33
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a1/
%G en
%F BGUMI_2021_3_a1
V. S. Zakrevskaya. Finite groups with given systems of generalised $\sigma$-permutable subgroups. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2021), pp. 25-33. http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a1/

[1] B. Hu, J. Huang, A. N. Skiba, “Finite groups with only F-normal and F-abnormal subgroups”, Journal of Group Theory, 22(5) (2019), 915–926 | DOI | MR | Zbl

[2] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, Moscow, 1978 | MR

[3] A. N. Skiba, “On sigma-subnormal and sigma-permutable subgroups of finite groups”, Journal of Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[4] A. N. Skiba, “Some characterizations of finite sigma-soluble PsigmaT-groups”, Journal of Algebra, 495 (2018), 114–129 | DOI | MR | Zbl

[5] A. N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, Journal of Algebra, 550 (2020), 69–85 | DOI | MR | Zbl

[6] A. N. Skiba, “A generalization of a Hall theorem”, Journal of Algebra and Its Applications, 15(5) (2016), 1650085 | DOI | MR | Zbl

[7] A. N. Skiba, “On some results in the theory of finite partially soluble groups”, Communications in Mathematics and Statistics, 4(3) (2016), 281–309 | DOI | MR | Zbl

[8] A. Ballester-Bolinches, J. C. Beidleman, H. Heineken, “Groups in which Sylow subgroups and subnormal subgroups permute”, Illinois Journal of Mathematics, 47(1–2) (2003), 63–69 | DOI | MR | Zbl

[9] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, De Gruyter Expositions in Mathematics, 53, De Gruyter, Berlin, 2010, 334 | DOI | MR | Zbl

[10] X. Yi, A. N. Skiba, “Some new characterizations of PST-groups”, Journal of Algebra, 399 (2014), 39–54 | DOI | MR | Zbl

[11] J. C. Beidleman, A. N. Skiba, “On tau*sigma-quasinormal subgroups of finite groups”, Journal of Group Theory, 20(5) (2017), 955–969 | DOI | MR | Zbl

[12] K. A. Al-Sharo, A. N. Skiba, “On finite groups with sigma-subnormal Schmidt subgroups”, Communications in Algebra, 45(10) (2017), 4158–4165 | DOI | MR | Zbl

[13] W. Guo, A. N. Skiba, “Groups with maximal subgroups of Sylow subgroups sigma-permutably embedded”, Journal of Group Theory, 20(1) (2017), 169–183 | DOI | MR | Zbl

[14] J. Huang, B. Hu, X. Wu, “Finite groups all of whose subgroups are sigma-subnormal or sigma-abnormal”, Communications in Algebra, 45(10) (2017), 4542–4549 | DOI | MR | Zbl

[15] B. Hu, J. Huang, A. N. Skiba, “Groups with only sigma-semipermutable and sigma-abnormal subgroups”, Acta Mathematica Hungarica, 153(1) (2017), 236–248 | DOI | MR | Zbl

[16] H. u. Bin, Huang. Jianhong, “On finite groups with generalized sigma-subnormal Schmidt subgroups”, Communications in Algebra, 46(7) (2018), 3127–3134 | DOI | MR | Zbl

[17] W. Guo, C. Zhang, A. N. Skiba, D. A. Sinitsa, “On H*sigma-permutable embedded subgroups of finite groups”, Rendiconti del Seminario Matematico della Universita di Padova, 139 (2018), 143–158 | DOI | MR | Zbl

[18] B. Hu, J. Huang, A. N. Skiba, “Finite groups with given systems of sigma-semipermutable subgroups”, Journal of Algebra and Its Applications, 17(2) (2017), 1850031 | DOI | MR

[19] W. Guo, A. N. Skiba, “Finite groups whose n-maximal subgroups are sigma-subnormal”, Science China Mathematics, 62(7) (2019), 1355–1372 | DOI | MR | Zbl

[20] V. A. Kovaleva, “A criterion for a finite group to be sigma-soluble”, Communications in Algebra, 46(12) (2018), 5410–5415 | DOI | MR | Zbl

[21] B. Hu, J. Huang, A. Skiba, “On sigma-quasinormal subgroups of finite groups”, Bulletin of the Australian Mathematical Society, 99(3) (2019), 413–420 | DOI | MR | Zbl

[22] A. N. Skiba, “On some classes of sublattices of the subgroup lattice”, Journal of the Belarusian State University Mathematics and Informatics, 3 (2019), 35–47 | DOI | MR | Zbl

[23] AE-R. Heliel, M. Al-Shomrani, A. Ballester-Bolinches, “On the sigma-length of maximal subgroups of finite sigma-soluble groups”, Mathematics, 8(12) (2020), 2165 | DOI | MR

[24] M. M. Al-Shomrani, A. A. Heliel, A. Ballester-Bolinches, “On sigma-subnormal closure”, Communications in Algebra, 48(8) (2020), 3624–3627 | DOI | MR | Zbl

[25] A. Ballester-Bolinches, S. F. Kamornikov, M. C. Pedraza-Aguilera, V. Perez-Calabuig, “On sigma-subnormality criteria in finite sigma-solublegroups”, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A: Matematicas, 114(2) (2020), 94 | DOI | MR | Zbl

[26] A. Ballester-Bolinches, S. F. Kamornikov, M. C. Pedraza-Aguilera, X. Yi, “On sigma-subnormal subgroups of factorised finite groups”, Journal of Algebra, 559 (2020), 195–202 | DOI | MR | Zbl

[27] S. F. Kamornikov, V. N. Tyutyanov, “On sigma-subnormal subgroups of finite groups”, Siberian Mathematical Journal, 61(2) (2020), 266–270 | DOI | MR | Zbl

[28] S. F. Kamornikov, V. N. Tyutyanov, “On sigma-subnormal subgroups of finite 3-groups”, Ukrainian Mathematical Journal, 72(6) (2020), 935–941 | DOI | MR | Zbl

[29] X. Yi, S. F. Kamornikov, “Finite groups with sigma-subnormal Schmidt subgroups”, Journal of Algebra, 560 (2020), 181–191 | DOI | MR | Zbl

[30] Zhang. Chi, W. u. Zhenfeng, Guo. Wenbin, “On weakly sigma-permutable subgroups of finite groups”, Publicationes Mathematicae Debrecen, 91(3–4) (2017), 489–502 | DOI | MR | Zbl

[31] B. Hu, J. Huang, A. N. Skiba, “On weakly sigma-quasinormal subgroups of finite groups”, Publicationes Mathematicae Debrecen, 92(1–2) (2018), 12 | DOI | MR

[32] A. N. Skiba, “On weakly s-permutable subgroups of finite groups”, Journal of Algebra, 315(1) (2007), 192–209 | DOI | MR | Zbl

[33] R. Schmidt, Subgroup lattices of groups, De Gruyter Expositions in Mathematics, 14, Berlin: Walter de Gruyter, 1994, 572 | DOI | MR | Zbl

[34] Wei. Xianbiao, “On weakly m-sigma-permutable subgroups of finite groups”, Communications in Algebra, 47(3) (2019), 945–956 | DOI | MR | Zbl

[35] Wang. Yanming, “c-Normality of groups and its properties”, Journal of Algebra, 180(3) (1996), 954–965 | DOI | MR | Zbl

[36] R. K. Agrawal, “Generalized center and hypercenter of a finite group”, Proceedings of the American Mathematical Society, 58(1) (1976), 13–21 | DOI | MR | Zbl

[37] M. Weinstein, “Between nilpotent and solvable”, Passaic: Polygonal, 1982, 231 | MR | Zbl

[38] R. Schmidt, “Endliche Gruppen mit vielen modularen Untergruppen”, Abhandlungen aus dem Mathematischen Seminar der Universitet Hamburg, 34(12) (1969), 115–125 | DOI | MR | Zbl

[39] W. Guo, “Structure theory for canonical classes of finite groups”, Heidelberg: Springer, 2015, 359 | MR

[40] V. S. Zakrevskaya, “Finite groups with partially sigma-subnormal subgroups in short maximal chains”, Advances in Group Theory and Application, 12 (2020), 91–106 | DOI | MR

[41] K. Doerk, T. O. Hawkes, Finite soluble groups, De Gruyter Expositions in Mathematics, 4, Berlin: De Gruyter, 1992 | DOI | MR | Zbl

[42] B. Huppert, Endliche Gruppen I, Grundlehren der mathematischen Wissenschaften, 134, Berlin: Springer, 1967, 796 | DOI | MR

[43] A. Ballester-Bolinches, L. M. Ezquerro, “Classes of finite groups”, Dordrecht: Springer, 2006, 381 | DOI | MR