Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2021_3_a1, author = {V. S. Zakrevskaya}, title = {Finite groups with given systems of generalised $\sigma$-permutable subgroups}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {25--33}, publisher = {mathdoc}, volume = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a1/} }
TY - JOUR AU - V. S. Zakrevskaya TI - Finite groups with given systems of generalised $\sigma$-permutable subgroups JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2021 SP - 25 EP - 33 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a1/ LA - en ID - BGUMI_2021_3_a1 ER -
%0 Journal Article %A V. S. Zakrevskaya %T Finite groups with given systems of generalised $\sigma$-permutable subgroups %J Journal of the Belarusian State University. Mathematics and Informatics %D 2021 %P 25-33 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a1/ %G en %F BGUMI_2021_3_a1
V. S. Zakrevskaya. Finite groups with given systems of generalised $\sigma$-permutable subgroups. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2021), pp. 25-33. http://geodesic.mathdoc.fr/item/BGUMI_2021_3_a1/
[1] B. Hu, J. Huang, A. N. Skiba, “Finite groups with only F-normal and F-abnormal subgroups”, Journal of Group Theory, 22(5) (2019), 915–926 | DOI | MR | Zbl
[2] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, Moscow, 1978 | MR
[3] A. N. Skiba, “On sigma-subnormal and sigma-permutable subgroups of finite groups”, Journal of Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[4] A. N. Skiba, “Some characterizations of finite sigma-soluble PsigmaT-groups”, Journal of Algebra, 495 (2018), 114–129 | DOI | MR | Zbl
[5] A. N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, Journal of Algebra, 550 (2020), 69–85 | DOI | MR | Zbl
[6] A. N. Skiba, “A generalization of a Hall theorem”, Journal of Algebra and Its Applications, 15(5) (2016), 1650085 | DOI | MR | Zbl
[7] A. N. Skiba, “On some results in the theory of finite partially soluble groups”, Communications in Mathematics and Statistics, 4(3) (2016), 281–309 | DOI | MR | Zbl
[8] A. Ballester-Bolinches, J. C. Beidleman, H. Heineken, “Groups in which Sylow subgroups and subnormal subgroups permute”, Illinois Journal of Mathematics, 47(1–2) (2003), 63–69 | DOI | MR | Zbl
[9] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, De Gruyter Expositions in Mathematics, 53, De Gruyter, Berlin, 2010, 334 | DOI | MR | Zbl
[10] X. Yi, A. N. Skiba, “Some new characterizations of PST-groups”, Journal of Algebra, 399 (2014), 39–54 | DOI | MR | Zbl
[11] J. C. Beidleman, A. N. Skiba, “On tau*sigma-quasinormal subgroups of finite groups”, Journal of Group Theory, 20(5) (2017), 955–969 | DOI | MR | Zbl
[12] K. A. Al-Sharo, A. N. Skiba, “On finite groups with sigma-subnormal Schmidt subgroups”, Communications in Algebra, 45(10) (2017), 4158–4165 | DOI | MR | Zbl
[13] W. Guo, A. N. Skiba, “Groups with maximal subgroups of Sylow subgroups sigma-permutably embedded”, Journal of Group Theory, 20(1) (2017), 169–183 | DOI | MR | Zbl
[14] J. Huang, B. Hu, X. Wu, “Finite groups all of whose subgroups are sigma-subnormal or sigma-abnormal”, Communications in Algebra, 45(10) (2017), 4542–4549 | DOI | MR | Zbl
[15] B. Hu, J. Huang, A. N. Skiba, “Groups with only sigma-semipermutable and sigma-abnormal subgroups”, Acta Mathematica Hungarica, 153(1) (2017), 236–248 | DOI | MR | Zbl
[16] H. u. Bin, Huang. Jianhong, “On finite groups with generalized sigma-subnormal Schmidt subgroups”, Communications in Algebra, 46(7) (2018), 3127–3134 | DOI | MR | Zbl
[17] W. Guo, C. Zhang, A. N. Skiba, D. A. Sinitsa, “On H*sigma-permutable embedded subgroups of finite groups”, Rendiconti del Seminario Matematico della Universita di Padova, 139 (2018), 143–158 | DOI | MR | Zbl
[18] B. Hu, J. Huang, A. N. Skiba, “Finite groups with given systems of sigma-semipermutable subgroups”, Journal of Algebra and Its Applications, 17(2) (2017), 1850031 | DOI | MR
[19] W. Guo, A. N. Skiba, “Finite groups whose n-maximal subgroups are sigma-subnormal”, Science China Mathematics, 62(7) (2019), 1355–1372 | DOI | MR | Zbl
[20] V. A. Kovaleva, “A criterion for a finite group to be sigma-soluble”, Communications in Algebra, 46(12) (2018), 5410–5415 | DOI | MR | Zbl
[21] B. Hu, J. Huang, A. Skiba, “On sigma-quasinormal subgroups of finite groups”, Bulletin of the Australian Mathematical Society, 99(3) (2019), 413–420 | DOI | MR | Zbl
[22] A. N. Skiba, “On some classes of sublattices of the subgroup lattice”, Journal of the Belarusian State University Mathematics and Informatics, 3 (2019), 35–47 | DOI | MR | Zbl
[23] AE-R. Heliel, M. Al-Shomrani, A. Ballester-Bolinches, “On the sigma-length of maximal subgroups of finite sigma-soluble groups”, Mathematics, 8(12) (2020), 2165 | DOI | MR
[24] M. M. Al-Shomrani, A. A. Heliel, A. Ballester-Bolinches, “On sigma-subnormal closure”, Communications in Algebra, 48(8) (2020), 3624–3627 | DOI | MR | Zbl
[25] A. Ballester-Bolinches, S. F. Kamornikov, M. C. Pedraza-Aguilera, V. Perez-Calabuig, “On sigma-subnormality criteria in finite sigma-solublegroups”, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A: Matematicas, 114(2) (2020), 94 | DOI | MR | Zbl
[26] A. Ballester-Bolinches, S. F. Kamornikov, M. C. Pedraza-Aguilera, X. Yi, “On sigma-subnormal subgroups of factorised finite groups”, Journal of Algebra, 559 (2020), 195–202 | DOI | MR | Zbl
[27] S. F. Kamornikov, V. N. Tyutyanov, “On sigma-subnormal subgroups of finite groups”, Siberian Mathematical Journal, 61(2) (2020), 266–270 | DOI | MR | Zbl
[28] S. F. Kamornikov, V. N. Tyutyanov, “On sigma-subnormal subgroups of finite 3-groups”, Ukrainian Mathematical Journal, 72(6) (2020), 935–941 | DOI | MR | Zbl
[29] X. Yi, S. F. Kamornikov, “Finite groups with sigma-subnormal Schmidt subgroups”, Journal of Algebra, 560 (2020), 181–191 | DOI | MR | Zbl
[30] Zhang. Chi, W. u. Zhenfeng, Guo. Wenbin, “On weakly sigma-permutable subgroups of finite groups”, Publicationes Mathematicae Debrecen, 91(3–4) (2017), 489–502 | DOI | MR | Zbl
[31] B. Hu, J. Huang, A. N. Skiba, “On weakly sigma-quasinormal subgroups of finite groups”, Publicationes Mathematicae Debrecen, 92(1–2) (2018), 12 | DOI | MR
[32] A. N. Skiba, “On weakly s-permutable subgroups of finite groups”, Journal of Algebra, 315(1) (2007), 192–209 | DOI | MR | Zbl
[33] R. Schmidt, Subgroup lattices of groups, De Gruyter Expositions in Mathematics, 14, Berlin: Walter de Gruyter, 1994, 572 | DOI | MR | Zbl
[34] Wei. Xianbiao, “On weakly m-sigma-permutable subgroups of finite groups”, Communications in Algebra, 47(3) (2019), 945–956 | DOI | MR | Zbl
[35] Wang. Yanming, “c-Normality of groups and its properties”, Journal of Algebra, 180(3) (1996), 954–965 | DOI | MR | Zbl
[36] R. K. Agrawal, “Generalized center and hypercenter of a finite group”, Proceedings of the American Mathematical Society, 58(1) (1976), 13–21 | DOI | MR | Zbl
[37] M. Weinstein, “Between nilpotent and solvable”, Passaic: Polygonal, 1982, 231 | MR | Zbl
[38] R. Schmidt, “Endliche Gruppen mit vielen modularen Untergruppen”, Abhandlungen aus dem Mathematischen Seminar der Universitet Hamburg, 34(12) (1969), 115–125 | DOI | MR | Zbl
[39] W. Guo, “Structure theory for canonical classes of finite groups”, Heidelberg: Springer, 2015, 359 | MR
[40] V. S. Zakrevskaya, “Finite groups with partially sigma-subnormal subgroups in short maximal chains”, Advances in Group Theory and Application, 12 (2020), 91–106 | DOI | MR
[41] K. Doerk, T. O. Hawkes, Finite soluble groups, De Gruyter Expositions in Mathematics, 4, Berlin: De Gruyter, 1992 | DOI | MR | Zbl
[42] B. Huppert, Endliche Gruppen I, Grundlehren der mathematischen Wissenschaften, 134, Berlin: Springer, 1967, 796 | DOI | MR
[43] A. Ballester-Bolinches, L. M. Ezquerro, “Classes of finite groups”, Dordrecht: Springer, 2006, 381 | DOI | MR