Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2021_2_a7, author = {V. I. Repnikov and B. V. Faleichik and A. V. Moisa}, title = {Stabilised explicit {Adams-type} methods}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {82--98}, publisher = {mathdoc}, volume = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a7/} }
TY - JOUR AU - V. I. Repnikov AU - B. V. Faleichik AU - A. V. Moisa TI - Stabilised explicit Adams-type methods JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2021 SP - 82 EP - 98 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a7/ LA - en ID - BGUMI_2021_2_a7 ER -
V. I. Repnikov; B. V. Faleichik; A. V. Moisa. Stabilised explicit Adams-type methods. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 82-98. http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a7/
[1] E. Hairer, G. Wanner, “Solving ordinary differential equations II: stiff and differential-algebraic problems”, Springer series in computational mathematics, 14, Springer, Berlin, 1996, 614 | DOI | MR | Zbl
[2] V. I. Lebedev, “How to solve stiff systems of differential equations by explicit methods. Numerical methods and applications”, CRC Press, Boca Raton, 1994, 45–80 | MR | Zbl
[3] B. P. Sommeijer, L. F. Shampine, J. G. Verwer, “RKC: an explicit solver for parabolic PDEs”, Journal of Computational and Applied Mathematics, 88(2) (1998), 315–326 | DOI | MR | Zbl
[4] A. Abdulle, A. A. Medovikov, “Second order Chebyshev methods based on orthogonal polynomials”, Numerische Mathematik, 90(1) (2001), 1–18 | DOI | MR | Zbl
[5] A. Abdulle, “Fourth order Chebyshev methods with recurrence relation”, SIAM Journal on Scientific Computing, 23(6) (2002), 2041–2054 | DOI | MR | Zbl
[6] R. Jeltsch, O. Nevanlinna, “Stability of explicit time discretizations for solving initial value problems”, Numerische Mathematik, 37(1) (1981), 61–91 | DOI | MR | Zbl
[7] R. Jeltsch, O. Nevanlinna, “Stability and accuracy of time discretizations for initial value problems”, Numerische Mathematik, 40(2) (1982), 245–296 | DOI | MR | Zbl
[8] I. Daubechies, “Ten lectures on wavelets”, CBMS-NSF regional conference series in applied mathematics, Society for Industrial and Applied Mathematics, Philadelphia, 1992, 369 | MR
[9] E. Hairer, S. P. Norsett, G. Wanner, “Solving ordinary differential equations I: nonstiff problems”, Springer series in computational mathematics, 8, Springer, Berlin, 1993, 528 | DOI | MR | Zbl
[10] Y. Xu, J. J. Zhao, “Estimation of longest stability interval for a kind of explicit linear multistep methods”, Discrete Dynamics in Nature and Society, 2010 (2010), 1–18 | DOI | MR