Stabilised explicit Adams-type methods
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 82-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we present explicit Adams-type multi-step methods with extended stability intervals, which are analogous to the stabilised Chebyshev Runge – Kutta methods. It is proved that for any $k \geq 1$ there exists an explicit $k$-step Adams-type method of order one with stability interval of length $2k$. The first order methods have remarkably simple expressions for their coefficients and error constant. A damped modification of these methods is derived. In the general case, to construct a $k$-step method of order $p$ it is necessary to solve a constrained optimisation problem in which the objective function and $p$ constraints are second degree polynomials in $k$ variables. We calculate higher-order methods up to order six numerically and perform some numerical experiments to confirm the accuracy and stability of the methods.
Keywords: numerical ODE solution; stiffness; stability interval; absolute stability; multi-step methods; Adams-type methods; explicit methods.
@article{BGUMI_2021_2_a7,
     author = {V. I. Repnikov and B. V. Faleichik and A. V. Moisa},
     title = {Stabilised explicit {Adams-type} methods},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {82--98},
     publisher = {mathdoc},
     volume = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a7/}
}
TY  - JOUR
AU  - V. I. Repnikov
AU  - B. V. Faleichik
AU  - A. V. Moisa
TI  - Stabilised explicit Adams-type methods
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 82
EP  - 98
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a7/
LA  - en
ID  - BGUMI_2021_2_a7
ER  - 
%0 Journal Article
%A V. I. Repnikov
%A B. V. Faleichik
%A A. V. Moisa
%T Stabilised explicit Adams-type methods
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 82-98
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a7/
%G en
%F BGUMI_2021_2_a7
V. I. Repnikov; B. V. Faleichik; A. V. Moisa. Stabilised explicit Adams-type methods. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 82-98. http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a7/

[1] E. Hairer, G. Wanner, “Solving ordinary differential equations II: stiff and differential-algebraic problems”, Springer series in computational mathematics, 14, Springer, Berlin, 1996, 614 | DOI | MR | Zbl

[2] V. I. Lebedev, “How to solve stiff systems of differential equations by explicit methods. Numerical methods and applications”, CRC Press, Boca Raton, 1994, 45–80 | MR | Zbl

[3] B. P. Sommeijer, L. F. Shampine, J. G. Verwer, “RKC: an explicit solver for parabolic PDEs”, Journal of Computational and Applied Mathematics, 88(2) (1998), 315–326 | DOI | MR | Zbl

[4] A. Abdulle, A. A. Medovikov, “Second order Chebyshev methods based on orthogonal polynomials”, Numerische Mathematik, 90(1) (2001), 1–18 | DOI | MR | Zbl

[5] A. Abdulle, “Fourth order Chebyshev methods with recurrence relation”, SIAM Journal on Scientific Computing, 23(6) (2002), 2041–2054 | DOI | MR | Zbl

[6] R. Jeltsch, O. Nevanlinna, “Stability of explicit time discretizations for solving initial value problems”, Numerische Mathematik, 37(1) (1981), 61–91 | DOI | MR | Zbl

[7] R. Jeltsch, O. Nevanlinna, “Stability and accuracy of time discretizations for initial value problems”, Numerische Mathematik, 40(2) (1982), 245–296 | DOI | MR | Zbl

[8] I. Daubechies, “Ten lectures on wavelets”, CBMS-NSF regional conference series in applied mathematics, Society for Industrial and Applied Mathematics, Philadelphia, 1992, 369 | MR

[9] E. Hairer, S. P. Norsett, G. Wanner, “Solving ordinary differential equations I: nonstiff problems”, Springer series in computational mathematics, 8, Springer, Berlin, 1993, 528 | DOI | MR | Zbl

[10] Y. Xu, J. J. Zhao, “Estimation of longest stability interval for a kind of explicit linear multistep methods”, Discrete Dynamics in Nature and Society, 2010 (2010), 1–18 | DOI | MR