Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2021_2_a4, author = {K. G. Atrokhau and E. V. Gromak}, title = {On solutions of the chazy equation}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {51--59}, publisher = {mathdoc}, volume = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a4/} }
K. G. Atrokhau; E. V. Gromak. On solutions of the chazy equation. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 51-59. http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a4/
[1] E. L. Ince, “Ordinary Differential Equations”, New York, Dover, 1956, 558 | MR
[2] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, “From Gauss to Painleve: a Modern Theory of Special Functions”, Aspects of mathematics, 16, Vieweg, Braunschweig, 1991, 347 | MR | Zbl
[3] J. Chazy, “Sur les equations differentielles du troisieme ordre et d’ordre superieur dont l’integrale generale a ses points critiques fixes”, Acta Mathematica, 34(1) (1911), 317–385 | DOI | MR | Zbl
[4] F. J. Bureau, “Differential equations with fixed critical points”, Annali di Matematica Pura ed Applicata, 64(1) (1964), 229–364 | DOI | MR | Zbl
[5] F. J. Bureau, “Differential equations with fixed critical points”, Annali di Matematica Pura ed Applicata, 66(1) (1964), 1–116 | DOI | MR | Zbl
[6] I. P. Martynov, “Third-order equations without moving critical singularities”, Differential Equations, 21(6) (1985), 937–946 | MR | Zbl
[7] H. Exton, “Nonlinear ordinary differential equations with fixed critical points”, Rendiconti di Matematica, 6(2) (1973), 419–462 | MR | Zbl
[8] C. M. Cosgrove, “Higher-order Painleve equations in the polynomial class I. Bureau symbol P2”, Studies in Applied Mathematics, 104(1) (2000), 1–65 | DOI | MR | Zbl
[9] U. Mugan, F. Jrad, “Painleve test and higher order differential equations”, Journal of Nonlinear Mathematical Physics, 9(3) (2002), 282–310 | DOI | MR | Zbl
[10] C. M. Cosgrove, “Higher-order Painleve equations in the polynomial class II. Bureau symbol P1”, Studies in Applied Mathematics, 116(4) (2006), 321–413 | DOI | MR | Zbl
[11] N. A. Kudryashov, “Fourth-order analogies to the Painleve equations”, Journal of Physics A: Mathematical and General, 35(21) (2002), 4617–4632 | DOI | MR | Zbl
[12] S. Sobolevsky, “Painleve classification of binomial type ordinary differential equations of the arbitrary order”, Studies in Applied Mathematics, 117(3) (2006), 215–237 | DOI | MR | Zbl
[13] V. I. Gromak, “On solutions of the Chazy system”, Differential Equations, 43(5) (2007), 631–635 | DOI | MR | Zbl
[14] K. G. Atrokhov, V. I. Gromak, “Solution of the Chazy system”, Differential Equations, 46(6) (2010), 783–797 | DOI | MR | Zbl
[15] E. V. Gromak, “Ob integrirovanii uravneniya Shazi s postoyannymi polyusami v ellipticheskikh funktsiyakh. Tezisy dokladov mezhdunarodnoi nauchnoi konferentsii «Analiticheskie metody analiza i differentsialnykh uravnenii»” (Minsk, Belarus), Institut matematiki Natsionalnoi akademii nauk Belarusi, Minsk, 2012, 28
[16] E. V. Gromak, “Ob uravneniyakh tretego poryadka P-tipa. XVI Mezhdunarodnaya nauchnaya konferentsiya po differentsialnym uravneniyam (Eruginskie chteniya – 2014)” (Novopolotsk, Belarus), 1, Institut matematiki NAN Belarusi, Minsk, 2-14, 11-12