On solutions of the chazy equation
Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 51-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Chazy system determines the necessary and sufficient conditions for the absence of movable critical points of solutions of the particular third order differential equation that was considered by Chazy in one of the first papers on the classification of higher-order ordinary differential equations with respect to the Painlevé property. The solution of the complete Chazy system in the case of constant poles has been already obtained. However, the question of integrating the Chazy equation remained open until now. In this paper, we prove that in the case of constant poles, under some additional conditions, this equation is integrated in elliptic functions.
Keywords: Chazy equation; Chazy system; Painlevé property; elliptic functions.
@article{BGUMI_2021_2_a4,
     author = {K. G. Atrokhau and E. V. Gromak},
     title = {On solutions of the chazy equation},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {51--59},
     publisher = {mathdoc},
     volume = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a4/}
}
TY  - JOUR
AU  - K. G. Atrokhau
AU  - E. V. Gromak
TI  - On solutions of the chazy equation
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 51
EP  - 59
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a4/
LA  - en
ID  - BGUMI_2021_2_a4
ER  - 
%0 Journal Article
%A K. G. Atrokhau
%A E. V. Gromak
%T On solutions of the chazy equation
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 51-59
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a4/
%G en
%F BGUMI_2021_2_a4
K. G. Atrokhau; E. V. Gromak. On solutions of the chazy equation. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 51-59. http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a4/

[1] E. L. Ince, “Ordinary Differential Equations”, New York, Dover, 1956, 558 | MR

[2] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, “From Gauss to Painleve: a Modern Theory of Special Functions”, Aspects of mathematics, 16, Vieweg, Braunschweig, 1991, 347 | MR | Zbl

[3] J. Chazy, “Sur les equations differentielles du troisieme ordre et d’ordre superieur dont l’integrale generale a ses points critiques fixes”, Acta Mathematica, 34(1) (1911), 317–385 | DOI | MR | Zbl

[4] F. J. Bureau, “Differential equations with fixed critical points”, Annali di Matematica Pura ed Applicata, 64(1) (1964), 229–364 | DOI | MR | Zbl

[5] F. J. Bureau, “Differential equations with fixed critical points”, Annali di Matematica Pura ed Applicata, 66(1) (1964), 1–116 | DOI | MR | Zbl

[6] I. P. Martynov, “Third-order equations without moving critical singularities”, Differential Equations, 21(6) (1985), 937–946 | MR | Zbl

[7] H. Exton, “Nonlinear ordinary differential equations with fixed critical points”, Rendiconti di Matematica, 6(2) (1973), 419–462 | MR | Zbl

[8] C. M. Cosgrove, “Higher-order Painleve equations in the polynomial class I. Bureau symbol P2”, Studies in Applied Mathematics, 104(1) (2000), 1–65 | DOI | MR | Zbl

[9] U. Mugan, F. Jrad, “Painleve test and higher order differential equations”, Journal of Nonlinear Mathematical Physics, 9(3) (2002), 282–310 | DOI | MR | Zbl

[10] C. M. Cosgrove, “Higher-order Painleve equations in the polynomial class II. Bureau symbol P1”, Studies in Applied Mathematics, 116(4) (2006), 321–413 | DOI | MR | Zbl

[11] N. A. Kudryashov, “Fourth-order analogies to the Painleve equations”, Journal of Physics A: Mathematical and General, 35(21) (2002), 4617–4632 | DOI | MR | Zbl

[12] S. Sobolevsky, “Painleve classification of binomial type ordinary differential equations of the arbitrary order”, Studies in Applied Mathematics, 117(3) (2006), 215–237 | DOI | MR | Zbl

[13] V. I. Gromak, “On solutions of the Chazy system”, Differential Equations, 43(5) (2007), 631–635 | DOI | MR | Zbl

[14] K. G. Atrokhov, V. I. Gromak, “Solution of the Chazy system”, Differential Equations, 46(6) (2010), 783–797 | DOI | MR | Zbl

[15] E. V. Gromak, “Ob integrirovanii uravneniya Shazi s postoyannymi polyusami v ellipticheskikh funktsiyakh. Tezisy dokladov mezhdunarodnoi nauchnoi konferentsii «Analiticheskie metody analiza i differentsialnykh uravnenii»” (Minsk, Belarus), Institut matematiki Natsionalnoi akademii nauk Belarusi, Minsk, 2012, 28

[16] E. V. Gromak, “Ob uravneniyakh tretego poryadka P-tipa. XVI Mezhdunarodnaya nauchnaya konferentsiya po differentsialnym uravneniyam (Eruginskie chteniya – 2014)” (Novopolotsk, Belarus), 1, Institut matematiki NAN Belarusi, Minsk, 2-14, 11-12