Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2021_2_a10, author = {E. E. Marushko and A. A. Doudkin and X. Zheng}, title = {Identification of {Earth's} surface objects using ensembles of convolutional neural networks}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {114--123}, publisher = {mathdoc}, volume = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a10/} }
TY - JOUR AU - E. E. Marushko AU - A. A. Doudkin AU - X. Zheng TI - Identification of Earth's surface objects using ensembles of convolutional neural networks JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2021 SP - 114 EP - 123 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a10/ LA - en ID - BGUMI_2021_2_a10 ER -
%0 Journal Article %A E. E. Marushko %A A. A. Doudkin %A X. Zheng %T Identification of Earth's surface objects using ensembles of convolutional neural networks %J Journal of the Belarusian State University. Mathematics and Informatics %D 2021 %P 114-123 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a10/ %G en %F BGUMI_2021_2_a10
E. E. Marushko; A. A. Doudkin; X. Zheng. Identification of Earth's surface objects using ensembles of convolutional neural networks. Journal of the Belarusian State University. Mathematics and Informatics, Tome 2 (2021), pp. 114-123. http://geodesic.mathdoc.fr/item/BGUMI_2021_2_a10/
[1] M. Kim, W. Choi, Y. Jeon, L. Liu, “A hybrid neural network model for power demand forecasting”, Energies, 12(5) (2019), 931 | DOI
[2] A. Frankel, K. Tachida, R. Jones, “Prediction of the evolution of the stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural network model”, Machine Learning: Science and Technology, 1(3) (2020), 035005 | DOI
[3] H. Liu, R. Yang, T. Wang, L. Zhang, “A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections”, Renewable Energy, 165 (2021), 573–594 | DOI
[4] C. Ma, X. Du, L. Cao, “Analysis of multi-types of flow features based on hybrid neural network for improving network anomaly detection”, IEEE Access, 7 (2019), 148363–148380 | DOI
[5] S. Berkhahn, L. Fuchs, I. Neuweiler, “An ensemble neural network model for real-time prediction of urban floods”, Journal of hydrology, 575 (2019), 743–754 | DOI
[6] B. Cheng, W. Wu, D. Tao, S. Mei, T. Mao, J. Cheng, “Random cropping ensemble neural network for image classification in a robotic arm grasping system”, IEEE Transactions on Instrumentation and Measurement, 69(9) (2020), 6795–6806 | DOI
[7] “Large scale visual recognition challenge”, 2021 | DOI
[8] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, “Backpropagation applied to handwritten zip code recognition”, Neural computation, 1(4) (1989), 541–551 | DOI
[9] I. Goodfellow, Y. Bengio, A. Courville, “Deep Learning”, MIT Press, Cambridge, 2016, 781 | MR
[10] D. Parikh, R. Polikar, “An ensemble-based incremental learning approach to data fusion”, IEEE Transactions on Systems, Man and Cybernetics. Part B: Cybernetics, 37(2) (2007), 437450 | DOI | MR
[11] E. E. Marushko, A. A. Doudkin, “Ensembles of neural networks for forecasting of time series of spacecraft telemetry”, Optical Memory and Neural Networks, 26(1) (2017), 47–54 | DOI
[12] N. Kourentzes, D. Barrow, S. Crone, “Neural network ensemble operators for time series forecasting”, Expert Systems with Applications, 41(9) (2014), 4235–4244 | DOI
[13] V. Vapnik, “The nature of statistical learning theory”, Springer, New York, 1999, 314 | MR
[14] J. Bergstra, Y. Bengio, “Random search for hyper-parameter optimization”, Machine Learning Research, 13 (2012), 281–305 | MR | Zbl
[15] B. Josh, “Statoil/C-CORE iceberg classifier challenge”, 2021 | DOI
[16] D. P. Kingma, JAdam. Ba, A method for stochastic optimization, 2017, arXiv: 1412.6980
[17] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2015, arXiv: href{https://arxiv.org/abs/1409.1556}{1409.1556}
[18] F. Chollet, “Xception. Deep learning with depthwise separable convolutions”, IEEE Computer Society, 2017, 1251–1258 | DOI
[19] K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition”, IEEE Computer Society, 2016, 770–778 | DOI | MR
[20] M. Tan, Q. V. Le, “Efficient net: rethinking model scaling for convolutional neural networks”, 2020, 11, arXiv: href{https://arxiv.org/abs/1905.11946}{1905.11946}
[21] G. Huang, Z. Liu, Der. Van, K. Q. Weinberger, “Densely connected convolutional networks”, IEEE Computer Society, 2017, 2261–2269 | DOI
[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. C. Chen, “MobilenetV2: inverted residuals and linear bottlenecks”, IEEE Computer Society, 2018, 4510–4520 | DOI
[23] L. Prechelt, “Early stopping – but when?”, Springer, Berlin, 1998, 55–69
[24] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, “Accurate, large minibatch SGD: training imagenet in 1 hour”, 2018, 12, arXiv: href{https://arxiv.org/abs/1706.02677}{1706.02677} | Zbl