Algorithm for forest fire smoke detection in video
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 91-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an efficient forest smoke detection algorithm in video sequences obtained from a stationary camera is proposed. The algorithm composed of three basic steps. At the first step, the frame contrast is improved. After that detection of slowly moving areas is performed based on dynamic and static features. For this we use adaptive background subtraction and color segmentation. The detected areas are divided into small blocks. Spatio-temporal analysis is applied to them. Blocks are classified based on covariance descriptors and support vector machine with a radial basis kernel function. Experimental results for processing real video show effectiveness of our algorithm for early forest smoke detection.
Keywords: forest fire; image analysis; background; covariance descriptors; support vector machine.
@article{BGUMI_2021_1_a7,
     author = {R. Bohush and S. V. Ablameyko},
     title = {Algorithm for forest fire smoke detection in video},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {91--101},
     publisher = {mathdoc},
     volume = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a7/}
}
TY  - JOUR
AU  - R. Bohush
AU  - S. V. Ablameyko
TI  - Algorithm for forest fire smoke detection in video
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 91
EP  - 101
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a7/
LA  - ru
ID  - BGUMI_2021_1_a7
ER  - 
%0 Journal Article
%A R. Bohush
%A S. V. Ablameyko
%T Algorithm for forest fire smoke detection in video
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 91-101
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a7/
%G ru
%F BGUMI_2021_1_a7
R. Bohush; S. V. Ablameyko. Algorithm for forest fire smoke detection in video. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 91-101. http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a7/

[1] A. Yu. Kudrin, A. I. Zaporozhets, Yu. V. Podrezov, “Sovremennye metody obnaruzheniya i monitoringa lesnykh pozharov”, Tekhnologii grazhdanskoi bezopasnosti, 3(4) (2006), 66–67

[2] O. V. Baranovskii, V. V. Krasnoproshin, A. N. Valvachev, “Sistema monitoringa prirodno-territorialnykh kompleksov”, Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. Fizika, matematika, informatika, 5 (2019), 12–15

[3] S. Ye, Z. Bai, H. Chen, R. Bohush, S. Ablameyko, “An effective algorithm to detect both smoke and flame using color and wavelet analysis”, Pattern Recognition and Image Analysis, 27(1) (2017), 131–138 | DOI

[4] F. Gomez-Rodriguez, B. S. Arrue, A. Ollero, “Smoke monitoring and measurement using image processing: application to forest fires”, Automatic target recognition XIII. AeroSense (Orlando, Florida, USA), 5094, 2003, 404–411 | DOI

[5] J. Vicente, P. Guillemant, “An image processing technique for automatically detecting forest fire”, International Journal of Thermal Sciences, 41(12) (2002), 1113–1120 | DOI

[6] B. U. Toreyin, A. E. Cetin, “Wildfire detection using LMS based active learning”, IEEE International conference on acoustics, speech and signal processing. Institute of Electrical and Electronics Engineers (Taipei, Taiwan), 2009, 1461–1464 | DOI

[7] A. Genovese, R. D. Labati, V. Piuri, F. Scotti, “Wildfire smoke detection using computational intelligence techniques” (Barcelona, Spain), IEEE International conference on computational intelligence for measurement systems and applications (CIMSA) proceedings. Real-time wildfire detection using correlation descriptors. 19th European signal processing conference (EUSIPCO-2011), 19 (2011), 894–898, European Association for Signal, Speech, and Image Processing (EURASIP), Kessariani

[8] B. C. Ko, J. O. Park, J. Y. Nam, “Spatiotemporal bag-of-features for early wildfire smoke detection”, Image and Vision Computing, 31(10) (2013), 786–795 | DOI

[9] Qin. Luxing, W. u. Xuehui, Cao. Yichao, L. u. Xiaobo, “An effective method for forest fire smoke detection”, Journal of Physics: Conference Series, 1187(5) (2019), 052045 | DOI

[10] V. V. Khomyakova, A. N. Khomyakov, “Primenenie svertochnykh neironnykh setei dlya obnaruzheniya dyma po videoposledovatelnosti”, Reshetnevskie chteniya, Rossiya, Krasnoyarsk (Materialy XXII Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyaschennoi pamyati generalnogo konstr), SibGU imeni Reshetneva MF

[11] Y. Zhao, H. Zhang, X. Zhang, W. Qian \erprint Wildfire smoke detection based on depthwise separable convolutions and target-awareness, 2020 | DOI

[12] Z. Zivkovic, F. van-der-Heijden, “Recursive unsupervised learning of finite mixture models”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5) (2004), 651–656 | DOI

[13] V. N. Vapnik, A. Ya. Chervonenkis, “Teoriya raspoznavaniya obrazov (statisticheskie problemy obucheniya)”, Nauka, Moskva, 1974, 416 | Zbl