Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2021_1_a7, author = {R. Bohush and S. V. Ablameyko}, title = {Algorithm for forest fire smoke detection in video}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {91--101}, publisher = {mathdoc}, volume = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a7/} }
TY - JOUR AU - R. Bohush AU - S. V. Ablameyko TI - Algorithm for forest fire smoke detection in video JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2021 SP - 91 EP - 101 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a7/ LA - ru ID - BGUMI_2021_1_a7 ER -
R. Bohush; S. V. Ablameyko. Algorithm for forest fire smoke detection in video. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 91-101. http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a7/
[1] A. Yu. Kudrin, A. I. Zaporozhets, Yu. V. Podrezov, “Sovremennye metody obnaruzheniya i monitoringa lesnykh pozharov”, Tekhnologii grazhdanskoi bezopasnosti, 3(4) (2006), 66–67
[2] O. V. Baranovskii, V. V. Krasnoproshin, A. N. Valvachev, “Sistema monitoringa prirodno-territorialnykh kompleksov”, Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. Fizika, matematika, informatika, 5 (2019), 12–15
[3] S. Ye, Z. Bai, H. Chen, R. Bohush, S. Ablameyko, “An effective algorithm to detect both smoke and flame using color and wavelet analysis”, Pattern Recognition and Image Analysis, 27(1) (2017), 131–138 | DOI
[4] F. Gomez-Rodriguez, B. S. Arrue, A. Ollero, “Smoke monitoring and measurement using image processing: application to forest fires”, Automatic target recognition XIII. AeroSense (Orlando, Florida, USA), 5094, 2003, 404–411 | DOI
[5] J. Vicente, P. Guillemant, “An image processing technique for automatically detecting forest fire”, International Journal of Thermal Sciences, 41(12) (2002), 1113–1120 | DOI
[6] B. U. Toreyin, A. E. Cetin, “Wildfire detection using LMS based active learning”, IEEE International conference on acoustics, speech and signal processing. Institute of Electrical and Electronics Engineers (Taipei, Taiwan), 2009, 1461–1464 | DOI
[7] A. Genovese, R. D. Labati, V. Piuri, F. Scotti, “Wildfire smoke detection using computational intelligence techniques” (Barcelona, Spain), IEEE International conference on computational intelligence for measurement systems and applications (CIMSA) proceedings. Real-time wildfire detection using correlation descriptors. 19th European signal processing conference (EUSIPCO-2011), 19 (2011), 894–898, European Association for Signal, Speech, and Image Processing (EURASIP), Kessariani
[8] B. C. Ko, J. O. Park, J. Y. Nam, “Spatiotemporal bag-of-features for early wildfire smoke detection”, Image and Vision Computing, 31(10) (2013), 786–795 | DOI
[9] Qin. Luxing, W. u. Xuehui, Cao. Yichao, L. u. Xiaobo, “An effective method for forest fire smoke detection”, Journal of Physics: Conference Series, 1187(5) (2019), 052045 | DOI
[10] V. V. Khomyakova, A. N. Khomyakov, “Primenenie svertochnykh neironnykh setei dlya obnaruzheniya dyma po videoposledovatelnosti”, Reshetnevskie chteniya, Rossiya, Krasnoyarsk (Materialy XXII Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyaschennoi pamyati generalnogo konstr), SibGU imeni Reshetneva MF
[11] Y. Zhao, H. Zhang, X. Zhang, W. Qian \erprint Wildfire smoke detection based on depthwise separable convolutions and target-awareness, 2020 | DOI
[12] Z. Zivkovic, F. van-der-Heijden, “Recursive unsupervised learning of finite mixture models”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5) (2004), 651–656 | DOI
[13] V. N. Vapnik, A. Ya. Chervonenkis, “Teoriya raspoznavaniya obrazov (statisticheskie problemy obucheniya)”, Nauka, Moskva, 1974, 416 | Zbl