Assessment of the cartilage transplant thickness after removing of the tympanic membrane retraction pocket (finite-element modelling)
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 69-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The retraction pocket emergence of the tympanic membrane (eardrum) leads to the sound conduction disorder of the middle ear. Surgical removal of fixed retraction pockets leads to perforations. A cartilage grafts in the region of these perforations are installed. The aim of the study is to assess the geometric parameters of the cartilage graft, providing sound conductivity of the middle ear oscillatory system corresponding the auditory functions of the normal middle ear. The evaluation of the geometric parameters of the cartilage graft is carried out on the basis of the middle ear finite-element model. The eigenfrequencies are utilised as quantities characterising the auditory conductivity of the middle ear oscillatory system. The thickness of the graft attached on the posterosuperior quadrant after removal of the fixed retraction pocket is $0.193\pm 0.031$ mm. It is evaluated on basis of comparative analysis of the middle ear eigenfrequency spectra in normal conditions, the middle ear with attached cartilaginous grafts of different thicknesses. The obtained results can be used for planning of surgical operations to restore the integrity of the tympanic membrane and improve auditory conductivity.
Keywords: middle ear; tympanic membrane; finite-element modelling; cartilage graft; eigenfrequency; auditory conductivity.
@article{BGUMI_2021_1_a5,
     author = {S. M. Bosiakov and K. S. Yurkevich and G. I. Mikhasev and L. G. Petrova and M. M. Maisyuk},
     title = {Assessment of the cartilage transplant thickness after removing of the tympanic membrane retraction pocket (finite-element modelling)},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a5/}
}
TY  - JOUR
AU  - S. M. Bosiakov
AU  - K. S. Yurkevich
AU  - G. I. Mikhasev
AU  - L. G. Petrova
AU  - M. M. Maisyuk
TI  - Assessment of the cartilage transplant thickness after removing of the tympanic membrane retraction pocket (finite-element modelling)
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 69
EP  - 78
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a5/
LA  - ru
ID  - BGUMI_2021_1_a5
ER  - 
%0 Journal Article
%A S. M. Bosiakov
%A K. S. Yurkevich
%A G. I. Mikhasev
%A L. G. Petrova
%A M. M. Maisyuk
%T Assessment of the cartilage transplant thickness after removing of the tympanic membrane retraction pocket (finite-element modelling)
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 69-78
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a5/
%G ru
%F BGUMI_2021_1_a5
S. M. Bosiakov; K. S. Yurkevich; G. I. Mikhasev; L. G. Petrova; M. M. Maisyuk. Assessment of the cartilage transplant thickness after removing of the tympanic membrane retraction pocket (finite-element modelling). Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 69-78. http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a5/

[1] J. Mierzwinski, A. J. Fishman, “Retraction pockets of tympanic membrane: protocol of management and results of treatment”, Otorynolaryngologia, 13(2) (2014), 114–121

[2] M. Cassano, P. Cassano, “Retraction pockets of pars tensa in pediatric patients: clinical evolution and treatment”, International Journal of Pediatric Otorhinolaryngology, 74(2) (2010), 178–182 | DOI

[3] H. H. Ching, A. G. Spinner, M. Ng, “Pediatric tympanic membrane cholesteatoma: systematic review and meta-analysis”, International Journal of Pediatric Otorhinolaryngology, 102 (2017), 21–27 | DOI | MR

[4] V. Couloigner, N. Molony, P. Viala, P. Contencin, P. Narcy, T. VanDenAbbeele, “Cartilage tympanoplasty for posterosuperior retraction pockets of the pars tensa in children”, Otology and Neurotology, 24(2) (2003), 264–269 | DOI

[5] J. L. Dornhoffer, “Cartilage tympanoplasty”, Otolaryngologic Clinics of North America, 39(6) (2006), 1161–1176 | DOI

[6] D. Murbe, T. Zahnert, M. Bornitz, K-B. Huttenbrink, “Acoustic properties of different cartilage reconstruction techniques of the tympanic membrane”, Laryngoscope, 112(10) (2002), 1769–1776 | DOI

[7] S. A. Ermochenko, G. I. Mikhasev, L. G. Petrova, “Raschet napryazhenno-deformirovannogo sostoyaniya srednego ukha pri ego totalnoi rekonstruktsii s uchetom vliyaniya ostatkov timpanalnoi membrany”, Rossiiskii zhurnal biomekhaniki, 12(3) (2008), 24–36

[8] P. I. Begun, K. V. Grachev, Dang. Le, “Modelirovanie uprugikh svoistv sistemy zvukoprovedeniya v norme i patologii”, Sensornye sistemy, 18(3) (2004), 206–210

[9] P. I. Begun, “Biomekhanicheskoe modelirovanie struktur srednego ukha v paketakh prikladnykh programm v norme, pri patologicheskikh izmeneniyakh, korrektsii i rekonstruktsii”, Folia Otorhinolaryngologiae et Pathologiae Respiratoriae, 19(3) (2013), 43–49

[10] W. R. Funnell, S. M. Khanna, W. F. Decraemer, “On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum”, The Journal of the Acoustical Society of America, 91(4) (1992), 2082–2090 | DOI

[11] H-J. Beer, M. Bornitz, H. J. Hardtke, R. Schmidt, G. Hofmann, U. Vogel, “Modeling of components of the human middle ear and simulation of their dynamic behaviour”, Audiology and Neurotology, 4(3–4) (1999), 156–162 | DOI | Zbl

[12] C. F. Lee, L. P. Hsu, P. R. Chen, Y. F. Chou, J. H. Chen, T. C. Liu, “Biomechanical modeling and design optimization of cartilage myringoplasty using finite element analysis”, Audiology and Neurotology, 11(6) (2006), 380–388 | DOI

[13] C. F. Lee, J. H. Chen, Y. F. Chou, L. P. Hsu, P. R. Chen, T. C. Liu, “Optimal graft thickness for different sizes of tympanic membrane perforation in cartilage myringoplasty: a finite element analysis”, Laryngoscope, 117(4) (2007), 725–730 | DOI

[14] Wen. Yu-Hsuan, Hsu. Lee-Ping, Chen. Peir-Rong, Lee. Chia-Fone, “Design optimization of cartilage myringoplasty using finite element analysis”, Tzu Chi Medical Journal, 18(5) (2006), 370–377 | DOI

[15] G. Mikhasev, S. Bosiakov, L. Petrova, M. Maisyuk, K. Yurkevich, “Assessment of eigenfrequencies of the middle ear oscillating system: effect of the cartilage transplant” (Lodz, Poland), Dynamical systems: modeling, Springer proceedings in mathematics and statistics, 181, Springer, Cham, 2016, 243–254 | DOI

[16] G. I. Mikhasev, S. M. Bosyakov, K. S. Yurkevich, A. A. Dutina, L. G. Petrova, M. M. Maisyuk, “Vybor tolschiny khryaschevogo transplantata dlya khirurgicheskogo lecheniya retraktsionnogo karmana timpanalnoi membrany na osnovanii modalnogo analiza kolebatelnoi sistemy srednego ukha”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2017), 52–58

[17] G. O. Mareev, “Sovremennye predstavleniya o srednem ukhe i ego matematicheskie modeli (obzor)”, Saratovskii nauchnomeditsinskii zhurnal, 8(1) (2012), 96–100

[18] J. Aernouts, I. Couckuyt, K. Crombecq, J. J. Dirckx, “Elastic characterization of membranes with a complex shape using point indentation measurements and inverse modeling”, International Journal of Engineering Science, 48(6) (2010), 599–611 | DOI

[19] Xie. Pengpeng, Peng. Yong, H. u. Junjiao, Y. i. Shengen, “A study on the effect of ligament and tendon detachment on human middle ear sound transfer using mathematic model”, Proceedings of the Institution of Mechanical Engineers. Journal of Engineering in Medicine, 233(8) (2019), 784–792 | DOI

[20] R. Z. Gan, B. Feng, Q. Sun, “Three-dimensional finite element modeling of human ear for sound transmission”, Annals of Biomedical Engineering, 32(6) (2004), 847–859 | DOI

[21] Q. Sun, K. H. Chang, K. J. Dormer, R. K. Dyer, R. Z. Gan, “An advanced computer-aided geometric modeling and fabrication method for human middle ear”, Medical Engineering and Physics, 24(9) (2002), 595–606 | DOI

[22] T. Koike, H. Wada, T. Kobayashi, “Modeling of the human middle ear using the finite-element method”, The Journal of the Acoustical Society of America, 111(3) (2002), 1306–1317 | DOI

[23] E. G. Wever, M. Lawrence, “Physiological acoustics”, Princeton University Press, Princeton, 2016, 476

[24] B. Areias, C. Santos, RMN. Jorge, F. Gentil, MPL. Parente, “Finite element modeling of sound transmission from outer to inner ear”, Proceedings of the Institution of Mechanical Engineers. Journal of Engineering in Medicine, 230(11) (2016), 999–1007 | DOI

[25] T. Zahnert, K. B. Huttenbrink, D. Murbe, M. Bornitz, “Experimental investigation of the use of cartilage in tympanic membrane reconstruction”, American Journal of Otology, 21(3) (2000), 322–328 | DOI

[26] G. I. Mikhasev, I. Slavashevich, K. Yurkevich, “Prediction of eigenfrequencies of the middle ear oscillating system after tympanoplasty and stapedotomy. Shell and membrane theories in mechanics and biology. From macro- to nanoscale structures”, Advanced structured materials, 45, Springer, Cham, 2015, 243–265 | MR | Zbl