Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2021_1_a4, author = {N. P. Prochorov and E. N. Dul}, title = {Graphs of intersections of closed polygonal chains}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {54--68}, publisher = {mathdoc}, volume = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a4/} }
TY - JOUR AU - N. P. Prochorov AU - E. N. Dul TI - Graphs of intersections of closed polygonal chains JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2021 SP - 54 EP - 68 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a4/ LA - ru ID - BGUMI_2021_1_a4 ER -
N. P. Prochorov; E. N. Dul. Graphs of intersections of closed polygonal chains. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 54-68. http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a4/
[1] F. W. Sinden, “Topology of thin film RC circuits”, The Bell System Technical Journal, 45(9) (1966), 1639–1662 | DOI | Zbl
[2] G. Ehrlich, S. Even, R. E. Tarjan, “Intersection graphs of curves in the plane”, Journal of Combinatorial Theory, 21(1) (1976), 8–20 | DOI | MR | Zbl
[3] J. Chalopin, D. Goncalves, “Every planar graph is the intersection graph of segments in the plane: extended abstract”, Proceedings of the Forty-first annual ACM symposium on theory of computing (Bethesda, Maryland, USA), Association for Computing Machinery, New York, 2009, 631–638 | DOI | Zbl
[4] J. Kratochvil, J. Matousek, “Intersection graphs of segments”, Journal of Combinatorial Theory, 62(2) (1994), 289–315 | DOI | MR | Zbl
[5] J. Kratochvil, “String graphs. Recognizing string graphs is NP-hard”, Journal of Combinatorial Theory, 52(1) (1991), 67–78 | DOI | MR | Zbl
[6] O. Ore, “Grafy i ikh primenenie”, Mir, Moskva, 1965, 174 | Zbl
[7] J. Kratochvil, “String graphs. The number of critical nonstring graphs is infinite”, Journal of Combinatorial Theory, 52(1) (1991), 53–66 | DOI | MR | Zbl
[8] C. Dangelmayr, “Intersection graphs of pseudosegments [dissertation]”, Freien Universitat Berlin, Berlin, 2010, 136 | MR
[9] D. B. Fuks, “Samoperesecheniya zamknutoi lomanoi”, Kvant, 1 (1988), 30–34
[10] J. M. Keil, “The complexity of domination problems in circle graphs”, Discrete Applied Mathematics, 42(1) (1993), 51–63 | DOI | MR | Zbl
[11] W. Unger, “On the k-colouring of circle-graphs”, STACS 88. 5th Annual symposium on theoretical aspects of computer science (Bordeaux, France), 294 (1988), 61–72, Springer-Verlag, Berlin | MR
[12] P. Damaschke, “The Hamiltonian circuit problem for circle graphs is NP-complete”, Information Processing Letters, 32(1) (1989), 1–2 | DOI | MR | Zbl
[13] M. R. Garey, D. S. Johnson, “Computers and intractability. A guide to the theory of NP-completeness”, 10, W H Freeman and Company, New York, 1979, 338 | MR
[14] L. G. Valiant, “Universality considerations in VLSI circuits”, IEEE Transactions on Computers, 30(2) (1981), 135–140 | DOI | MR | Zbl
[15] J. Renegar, “On the computational complexity and geometry of the first-order theory of the reals”, Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals. Journal of Symbolic Computation, 13(3) (1992), 255–299 | DOI | MR | Zbl
[16] A. Pilz, E. Welzl, “Order on order types” (Eindhoven, The Netherlands), 31st International symposium on computational geometry (SoCG’2015), 34 (2015), 285–299, Schloss Dagstuhl – Leibniz-Zentrum fur Informatik, Wadern | DOI | MR
[17] J. E. Goodman, R. Pollack, B. Sturmfels, “The intrinsic spread of a configuration in Rd”, Journal of the American Mathematical Society, 3(3) (1990), 639–651 | DOI | MR | Zbl