On the countably-compactifiability in the sense of Morita
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 46-53

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an extension $Y$ of a topological space $X$ that is canonically embedded in the Wallman extension $\omega X$, in which any countably compact set closed in $X$ is closed and such that any infinite set contained in $X$ has a limit point in it. This extension is called saturation of the space $X$. We find a necessary and sufficient condition for the countable compactness of the space $Y$. Thus the problem of existence of countably-compactification in the sense of Morita of certain type is solved.
Keywords: countably-compactification in the sense of Morita; Wallman compactification; saturation of topological space.
@article{BGUMI_2021_1_a3,
     author = {V. L. Timokhovich and H. O. Kukrak},
     title = {On the countably-compactifiability in the sense of {Morita}},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {46--53},
     publisher = {mathdoc},
     volume = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a3/}
}
TY  - JOUR
AU  - V. L. Timokhovich
AU  - H. O. Kukrak
TI  - On the countably-compactifiability in the sense of Morita
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 46
EP  - 53
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a3/
LA  - ru
ID  - BGUMI_2021_1_a3
ER  - 
%0 Journal Article
%A V. L. Timokhovich
%A H. O. Kukrak
%T On the countably-compactifiability in the sense of Morita
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 46-53
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a3/
%G ru
%F BGUMI_2021_1_a3
V. L. Timokhovich; H. O. Kukrak. On the countably-compactifiability in the sense of Morita. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 46-53. http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a3/