On the countably-compactifiability in the sense of Morita
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 46-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an extension $Y$ of a topological space $X$ that is canonically embedded in the Wallman extension $\omega X$, in which any countably compact set closed in $X$ is closed and such that any infinite set contained in $X$ has a limit point in it. This extension is called saturation of the space $X$. We find a necessary and sufficient condition for the countable compactness of the space $Y$. Thus the problem of existence of countably-compactification in the sense of Morita of certain type is solved.
Keywords: countably-compactification in the sense of Morita; Wallman compactification; saturation of topological space.
@article{BGUMI_2021_1_a3,
     author = {V. L. Timokhovich and H. O. Kukrak},
     title = {On the countably-compactifiability in the sense of {Morita}},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {46--53},
     publisher = {mathdoc},
     volume = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a3/}
}
TY  - JOUR
AU  - V. L. Timokhovich
AU  - H. O. Kukrak
TI  - On the countably-compactifiability in the sense of Morita
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2021
SP  - 46
EP  - 53
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a3/
LA  - ru
ID  - BGUMI_2021_1_a3
ER  - 
%0 Journal Article
%A V. L. Timokhovich
%A H. O. Kukrak
%T On the countably-compactifiability in the sense of Morita
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2021
%P 46-53
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a3/
%G ru
%F BGUMI_2021_1_a3
V. L. Timokhovich; H. O. Kukrak. On the countably-compactifiability in the sense of Morita. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 46-53. http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a3/

[1] A. V. Arkhangelskii, “Ob odnom klasse prostranstv, soderzhaschem vse metricheskie i vse lokalno bikompaktnye prostranstva”, Matematicheskii sbornik, 67(1) (1965), 55–88

[2] K. Morita, “Products of normal spaces with metric spaces”, Mathematische Annalen, 154(4) (1964), 365–382 | DOI | MR | Zbl

[3] J. Nagata, “A note on M-spaces and topologically complete spaces”, Proceedings of the Japan Academy, 45(7) (1969), 541–543 | DOI | MR | Zbl

[4] K. Morita, “Countably-compactifiable spaces”, Science Reports of the Tokyo Kyoiku Daigaku, 12(313/328) (1973), 7–15 | MR | Zbl

[5] D. K. Burke, Douwen. van, “On countably compact extensions of normal locally compact M-spaces”, Set-Theoretic Topology, 1977, 81–89 | DOI | MR

[6] T. Isiwata, “On closed countably-compactifications”, General Topology and its Applications, 4(2) (1974), 143–167 | DOI | MR | Zbl

[7] I. Yu. Goldovt, V. L. Timokhovich, “Nasyscheniya topologicheskikh prostranstv i problema Morita”, Doklady Akademii nauk BSSR, 21(9) (1977), 777–780 | MR | Zbl

[8] M. A. Levin, V. L. Timokhovich, “M-prostranstva i silnaya schetnokompaktifitsiruemost”, Doklady Akademii nauk BSSR, 23(3) (1979), 213–216 | Zbl

[9] W. M. Fleischman, “A new extension of countable compactness”, Fundamenta Mathematicae, 67(1) (1970), 1–9 | DOI | MR | Zbl

[10] Douwen. van, G. M. Reed, A. W. Roscoe, I. J. Tree, “Star covering properties”, Topology and its Applications, 39(1) (1991), 71–103 | DOI | MR | Zbl

[11] A. V. Arkhangelskii, “Kompaktnost”, Itogi nauki i tekhniki. Seriya: Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1989, 5–128, VINITI, Moskva

[12] R. Engelking, “Obschaya topologiya”, Mir, Moskva, 1986, 752 | MR

[13] G. O. Kukrak, V. L. Timokhovich, “O predele obratnogo spektra eksponentsialnykh prostranstv”, Vestnik BGU. Fizika. Matematika. Informatika, 1 (2001), 51–55 | MR | Zbl

[14] J. D. Hansard, “Function space topologies”, Pacific Journal of Mathematics, 35(2) (1970), 381–388 | DOI | MR | Zbl

[15] D. S. Frolova, “O sekventsialno sobstvennykh topologiyakh prostranstva otobrazhenii”, Trudy Instituta matematiki, 21(1) (2013), 102–108 | Zbl