Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2021_1_a1, author = {F. E. Lomovtsev}, title = {The first mixed problem for the general telegraph equation with variable coefficients on the half-line}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {18--38}, publisher = {mathdoc}, volume = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a1/} }
TY - JOUR AU - F. E. Lomovtsev TI - The first mixed problem for the general telegraph equation with variable coefficients on the half-line JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2021 SP - 18 EP - 38 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a1/ LA - ru ID - BGUMI_2021_1_a1 ER -
%0 Journal Article %A F. E. Lomovtsev %T The first mixed problem for the general telegraph equation with variable coefficients on the half-line %J Journal of the Belarusian State University. Mathematics and Informatics %D 2021 %P 18-38 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a1/ %G ru %F BGUMI_2021_1_a1
F. E. Lomovtsev. The first mixed problem for the general telegraph equation with variable coefficients on the half-line. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 18-38. http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a1/
[1] S. N. Baranovskaya, O klassicheskom reshenii pervoi smeshannoi zadachi dlya odnomernogo giperbolicheskogo uravneniya [On the classical solution of the first mixed problem for a one-dimensional hyperbolic equation], dissertation, Belarusian State University, Minsk, 1991
[2] F. E. Lomovtsev, “The theory of stability and motion control; Stochastic differential equations; Partial differential equations”, Methods of teaching mathematics, 2015, 74–75, Institute of Mathematics, National Academy of Sciences of Belarus, Minsk
[3] E. I. Moiseev, N. I. Yurchuk, “Classical and generalized solutions to problems for telegraph equations with the Dirac potential”, Differentsial’nye uravneniya, 51(10) (2015), 1338–1344 | DOI | MR | Zbl
[4] S. N. Baranovskaya, E. N. Novikov, N. I. Yurchuk, “The oblique derivative problem in the boundary condition for the telegraph equation with the Dirac potential”, Differentsial’nye uravneniya, 54(9) (2018), 1176–1183 | DOI | MR | Zbl
[5] D. S. Anikonov, D. S. Konovalova, “Generalized d’Alembert formula for the wave equation with discontinuous coefficients”, Differentsial’nye uravneniya, 55(2) (2019), 265–268 | DOI | MR | Zbl
[6] A. P. Khromov, “On the convergence of the formal Fourier solution of the wave equation with a summable potential”, Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki, 56(10) (2016), 1795–1809 | DOI | MR | Zbl
[7] V. V. Kornev, A. P. Khromov, “Resolvent approach to Fourier method in a mixed problem for non-homogeneous wave equation”, Izvestiya Saratovskogo universiteta. Novaya seriya. Matematika. Mekhanika. Informatika, 16(4) (2016), 403–413 | DOI | MR
[8] A. P. Khromov, “Mixed problem for wave equation with summable potential and nonzero initial velocity”, Doklady Akademii nauk, 474(6) (2017), 668–670 | MR | Zbl
[9] A. P. Khromov, “On classic solution of the problem for a homogeneous wave equation with fixed end-points and zero initial velocity”, Izvestiya Saratovskogo universiteta. Novaya seriya. Matematika. Mekhanika. Informatika, 19(3) (2019), 280–288 | DOI | MR | Zbl
[10] A. P. Khromov, V. V. Kornev, “Classical and generalized solutions of a mixed problem for a non-homogeneous wave equation”, Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, 59(2) (2019), 286–300 | DOI | MR | Zbl
[11] A. P. Khromov, “Necessary and sufficient conditions for the existence of a classical solution of a mixed problem for a homogeneous wave equation with an integrable potential”, Differentsial’nye uravneniya, 55(5) (2019), 717–731 | DOI | MR | Zbl
[12] A. P. Khromov, V. V. Kornev, “Classical and generalized of a mixed problem – solutions for a non-homogeneous wave equation”, Doklady Akademii nauk, 484(1) (2019), 18–20 | DOI | MR | Zbl
[13] V. V. Kornev, A. P. Khromov, “Divergent series and generalized solution of a mixed problem for wave equation”, Sovremennye metody teorii kraevykh zadach. Materialy mezhdunarodnoi konferentsii. Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya – XXXI» (Russia), 2020, 99–102, Nauka-Yunipress, Voronezh
[14] I. S. Lomov, “d’Alembert generalized formula for the telegraph equation in case of a substantially non-self-adjoint operator”, Sovremennye metody teorii kraevykh zadach; Materialy mezhdunarodnoi konferentsii. Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya – XXXI» (Russia), 2020, 124–126, Nauka-Yunipress, Voronezh
[15] R. Courant, D. Hilbert, “Methods of mathematical physics”, Partial differential equations, 2 (1962), 830, Wiley, New York | MR
[16] F. E. Lomovtsev, V. V. Lysenko, “Non-characteristic mixed problem for a one-dimensional wave equation in the first quarter of the plane with non-stationary boundary second derivatives”, Vesnik Vicebskaga dzjarzhawnaga wniversitjeta, 3 (2019), 5–17
[17] F. E. Lomautsau, “Correction method of test solutions of the general wave equation in the first quarter of the plane for minimal smoothness of its right-hand side”, Journal of the Belarusian State University. Mathematics and Informatics, 3 (2017), 38–52
[18] J. Schauder, “Uber lineare elliptische Differentialgleichungen zweiter Ordnung”, Mathematische Zeitschrift, 38 (1934), 257–282 | DOI | MR
[19] O. A. Ladyzhenskaya, “Kraevye zadachi matematicheskoi fiziki [Boundary-value problems of mathematical physics]”, Nauka, Moscow, 1973, 408 | MR | Zbl
[20] N. I. Yurchuk, “Partially characteristic boundary value problem for one kind of partial differential equations”, Differentsial’nye uravneniya, 5(3) (1969), 531–542 | MR | Zbl
[21] F. E. Lomautsau, “On necessary and sufficient conditions for the unique solvability of the Cauchy problem for second-order hyperbolic differential equations with a variable domain of definition of operator coefficients”, Differentsial’nye uravneniya, 28(5) (1992), 873–886 | MR
[22] F. E. Lomautsau, “Smoothness of strong solutions of complete hyperbolic second-order differential equations with variable domains of operator coefficients”, Differentsial’nye uravneniya, 37(2) (2001), 276–278 | MR
[23] J. Lions, E. Magenes, “Problemes aux limites non homogenes et applications”, Dunod, Paris, 1968, 372 | MR | Zbl
[24] K. Yosida, “Functional analysis”, Springer-Verlag, Berlin, 1965, 458 | MR | Zbl