Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2021_1_a0, author = {M. P. Dymkov}, title = {Optimisation problem for some class of hybrid differential-difference systems with delay}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {6--17}, publisher = {mathdoc}, volume = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a0/} }
TY - JOUR AU - M. P. Dymkov TI - Optimisation problem for some class of hybrid differential-difference systems with delay JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2021 SP - 6 EP - 17 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a0/ LA - en ID - BGUMI_2021_1_a0 ER -
%0 Journal Article %A M. P. Dymkov %T Optimisation problem for some class of hybrid differential-difference systems with delay %J Journal of the Belarusian State University. Mathematics and Informatics %D 2021 %P 6-17 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a0/ %G en %F BGUMI_2021_1_a0
M. P. Dymkov. Optimisation problem for some class of hybrid differential-difference systems with delay. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2021), pp. 6-17. http://geodesic.mathdoc.fr/item/BGUMI_2021_1_a0/
[1] J. Wang, M. He, J. Xi, X. Yang, “Suboptimal output consensus for time-delayed singular multi-agent systems”, Asian Journal of Control, 20(11) (2018), 721–734 | DOI | MR | Zbl
[2] J. K. Hale, SMV. Lunel, “Introduction to functional differential equations”, Applied mathematical sciences, 99, Springer-Verlag, New York, 1993, 450 | DOI | MR
[3] E. V. Grigorieva, S. A. Kaschenko, “Asymptotic representation of relaxation oscillations in lasers”, Switzerland: Springer International Publishing, 2017, 230 | DOI | MR
[4] C. Zhang, X. Wang, C. Wang, W. Zhou, “Synchronization of uncertain complex networks with time-varying node delay and multiple time-varying coupling delays”, Asian Journal of Control, 20(1) (2018), 186–195 | DOI | MR | Zbl
[5] E. Rogers, K. Galkowski, D. H. Owens, “Control systems theory and applications for linear repetitive processes”, Lecture notes in control and information sciences, 349, Springer Verlag, Berlin, 2007, 456 | DOI | MR
[6] S. Dymkou, E. Rogers, M. Dymkov, K. Galkowski, D. H. Owens, “Delay systems approach to linear differential repetitive processes”, IFAC Proceedings Volumes, 36(19) (2003), 333–338 | DOI
[7] S. Dymkou, E. Rogers, M. Dymkov, K. Galkowski, D. H. Owens, “An approach to controllability and optimization problems for repetitive processes”, Stability and control processes (SCP-2005); Proceedings of international conference, 2, Saint Petersburg University, Russia, 2005, 1504–1516
[8] S. Dymkou, “Graph and 2-D optimization theory and their application for discrete simulation of gas transportation networks and industrial processes with repetitive operations [dissertation]”, Aachen: RWTH, 2006, 147
[9] V. M. Marchenko, “Hybrid discrete-continuous systems”, Controllability and reachability. Differential Equations, 49(1) (2013), 112–125 | DOI | MR | Zbl
[10] R. Gabasov, F. M. Kirillova, “The qualitative theory of optimal processes”, M Dekker, New York, 1976, 640 | MR | Zbl
[11] S. Dymkou, M. Dymkov, E. Rogers, K. Galkowski, “Optimal control of non-stationary differential linear repetitive processes”, Integral Equations and Operator Theory, 60 (2008), 201–216 | DOI | MR | Zbl
[12] M. Dymkov, E. Rogers, S. Dymkou, K. Galkowski, “Constrained optimal control theory for differential linear repetitive processes”, SIAM Journal on Control and Optimization, 47(1) (2008), 396–420 | DOI | MR | Zbl