The influence of the length of heat sources on the external border on the temperature distribution in profiled polar-orthotropic ring plates taking into account there heat exchange with the external environment
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the influence of $N$ extended heat sources at external boundaries on the nonaxisymmetric temperature distribution on profiled polar-orthotropic ring plates and take into account heat exchange with the external environment. The solution of the stationary heat conduction problem for anisotropic annular plates of a random profile is resolved through the solution of the corresponding Volterra integral equation of the second kind. The formula of a temperature calculations in anisotropic annular plates of an random profile is given. The exact solution of stationary heat conductivity problem for a reverse conical polar-orthotropic ring plate is recorded. The temperature distribution in such anisotropic plate from $N$ extended heat sources at its outer border is more complex than in the case of temperature distribution from $N$ point heat sources at their external border.
Keywords: polar-orthotropic annular plate; temperature; stationary equation of heat conductivity; Volterra integral equation of the second kind; reverse conical ring plate.
@article{BGUMI_2020_3_a8,
     author = {V. V. Korolevich and D. G. Medvedev},
     title = {The influence of the length of heat sources on the external border on the temperature distribution in profiled polar-orthotropic ring plates taking into account there heat exchange with the external environment},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {86--91},
     publisher = {mathdoc},
     volume = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a8/}
}
TY  - JOUR
AU  - V. V. Korolevich
AU  - D. G. Medvedev
TI  - The influence of the length of heat sources on the external border on the temperature distribution in profiled polar-orthotropic ring plates taking into account there heat exchange with the external environment
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2020
SP  - 86
EP  - 91
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a8/
LA  - ru
ID  - BGUMI_2020_3_a8
ER  - 
%0 Journal Article
%A V. V. Korolevich
%A D. G. Medvedev
%T The influence of the length of heat sources on the external border on the temperature distribution in profiled polar-orthotropic ring plates taking into account there heat exchange with the external environment
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 86-91
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a8/
%G ru
%F BGUMI_2020_3_a8
V. V. Korolevich; D. G. Medvedev. The influence of the length of heat sources on the external border on the temperature distribution in profiled polar-orthotropic ring plates taking into account there heat exchange with the external environment. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 86-91. http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a8/

[1] V. V. Korolevich, “Reshenie neosesimmetrichnoi statsionarnoi zadachi teploprovodnosti dlya polyarno-ortotropnoi koltsevoi plastiny peremennoi tolschiny s uchetom teploobmena s vneshnei sredoi”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 1 (2020), 47–58 | DOI | MR

[2] A. I. Uzdalev, E. N. Bryukhanova, “Uravnenie teploprovodnosti dlya plastin peremennoi tolschiny s neodnorodnymi teplofizicheskimi svoistvami”, Zadachi prikladnoi teorii uprugosti, 1985, 3–7, Saratov: Saratovskii politekhnicheskii institut

[3] V. V. Korolevich, “Statsionarnye temperaturnye polya v anizotropnykh plastinakh peremennoi tolschiny s uchetom teploobmena s vneshnei sredoi”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2 (2018), 58–66 | MR | Zbl