Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2020_3_a3, author = {Yu. S. Kharin and V. A. Valoshka and O. V. Dernakova and V. I. Malugin and A. J. Kharin}, title = {Statistical forecasting of the dynamics of epidemiological indicators for {COVID-19} incidence in the republic of belarus}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {36--50}, publisher = {mathdoc}, volume = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a3/} }
TY - JOUR AU - Yu. S. Kharin AU - V. A. Valoshka AU - O. V. Dernakova AU - V. I. Malugin AU - A. J. Kharin TI - Statistical forecasting of the dynamics of epidemiological indicators for COVID-19 incidence in the republic of belarus JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2020 SP - 36 EP - 50 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a3/ LA - ru ID - BGUMI_2020_3_a3 ER -
%0 Journal Article %A Yu. S. Kharin %A V. A. Valoshka %A O. V. Dernakova %A V. I. Malugin %A A. J. Kharin %T Statistical forecasting of the dynamics of epidemiological indicators for COVID-19 incidence in the republic of belarus %J Journal of the Belarusian State University. Mathematics and Informatics %D 2020 %P 36-50 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a3/ %G ru %F BGUMI_2020_3_a3
Yu. S. Kharin; V. A. Valoshka; O. V. Dernakova; V. I. Malugin; A. J. Kharin. Statistical forecasting of the dynamics of epidemiological indicators for COVID-19 incidence in the republic of belarus. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 36-50. http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a3/
[1] M. A. Kondratev, “Metody prognozirovaniya i modeli rasprostraneniya zabolevanii”, Kompyuternye issledovaniya i modelirovanie, 5(5) (2013), 863–882 | DOI
[2] R. Hirk, G. Kastner, L. Vana, “Investigating the dark figure of COVID-19 cases in Austria: borrowing from the decode genetics study in Iceland”, Austrian Journal of Statistics, 49(5) (2020), 1–17 | DOI
[3] D. Fanelli, F. Piazza, “Analysis and forecast of COVID-19 spreading in China, Italy and France”, Chaos, Solitons and Fractals, 134 (2020), 109841 | DOI | MR
[4] Y. u. Kharin, “Robustness in statistical forecasting”, New York: Springer, 2013, 356 | MR
[5] YuS. Kharin, V. A. Voloshko, E. A. Medved, “Statistical estimation of parameters for binary conditionally nonlinear autoregressive time series”, Mathematical Methods of Statistics, 27 (2018), 103–118 | DOI | MR
[6] V. A. Voloshko, Yu. S. Kharin, “Semibinomialnye uslovno nelineinye avtoregressionnye modeli diskretnykh sluchainykh posledovatelnostei: veroyatnostnye svoistva i statisticheskoe otsenivanie parametrov”, Diskretnaya matematika, 31(1) (2019), 72–98 | DOI
[7] Y. u. Kharin, M. Zhurak, “Analysis of spatio-temporal data based on Poisson conditional autoregressive model”, Informatica, 26(1) (2015), 67–87 | DOI | MR | Zbl
[8] V. V. Maevskii, YuS. Kharin, “Robust regressive forecasting under functional distortions in a model”, Automation and Remote Control, 63(11) (2002), 1803–1820 | DOI | MR | Zbl
[9] M. A. Pashkevich, YuS. Kharin, “Robust estimation and forecasting for beta-mixed hierarchical models of grouped binary data”, Statistics and Operations Research Transactions, 28(2) (2004), 125–160 | MR | Zbl
[10] L. N. Bolshev, N. V. Smirnov, “Tablitsy matematicheskoi statistiki”, Moskva: Nauka, 1983, 512 | MR
[11] Yu. S. Kharin, N. M. Zuev, E. E. Zhuk, “Teoriya veroyatnostei, matematicheskaya i prikladnaya statistika”, Minsk: BGU, 2011, 465
[12] Yu. S. Kharin, “Optimalnost i robastnost v statisticheskom prognozirovanii”, Minsk: BGU, 2008, 265
[13] Y. u. Kharin, “Statistical analysis of discrete-valued time series by parsimonious high-order Markov chains”, Austrian Journal of Statistics, 49(4) (2020), 76–88 | DOI
[14] B. Kedem, K. Fokianos, “Regression models for time series analysis”, Wiley: Hoboken, 2002, 326 | MR
[15] V. I. Malyugin, “Metody analiza mnogomernykh ekonometricheskikh modelei s neodnorodnoi strukturoi”, Minsk: BGU, 2014, 351
[16] V. Colizza, A. Barrat, M. Barthelemy, A. Vespignani, “Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study”, BMC Medicine, 5 (2007), 34 | DOI
[17] R. F. Engle, CWJ. Granger, “Co-integration and error correction: representation, estimation and testing”, Econometrica, 55(2) (1987), 251–276 | DOI | MR | Zbl
[18] W. O. Kermack, A. G. McKendrick, “Contributions to the mathematical theory of epidemics – I”, Bulletin of Mathematical Biology, 53(1–2) (1991), 33–55 | DOI
[19] Yu. S. Kharin, V. I. Malyugin, A. Yu. Kharin, “Ekonometricheskoe modelirovanie”, Minsk: BGU, 2003, 313
[20] S. Johansen, “Likelihood-based inference in cointegrated vector autoregressive models”, Oxford: Oxford University Press, 1995, 267 | MR | Zbl
[21] A. Yu. Kharin, “Robastnost baiesovskikh i posledovatelnykh statisticheskikh reshayuschikh pravil”, Minsk: BGU, 2013, 207
[22] A. Kharin, T. T. Tu, “Performance and robustness analysis of sequential hypotheses testing for time series with trend”, Austrian Journal of Statistics, 46(3–4) (2017), 23–36 | DOI | MR
[23] AYu. Kharin, “An approach to asymptotic robustness analysis of sequential tests for composite parametric hypotheses”, Journal of Mathematical Sciences, 227(2) (2017), 196–203 | DOI | MR