Linear semidefinite programming problems: regularisation and strong dual formulations
Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 17-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Regularisation consists in reducing a given optimisation problem to an equivalent form where certain regularity conditions, which guarantee the strong duality, are fulfilled. In this paper, for linear problems of semidefinite programming (SDP), we propose a regularisation procedure which is based on the concept of an immobile index set and its properties. This procedure is described in the form of a finite algorithm which converts any linear semidefinite problem to a form that satisfies the Slater condition. Using the properties of the immobile indices and the described regularisation procedure, we obtained new dual SDP problems in implicit and explicit forms. It is proven that for the constructed dual problems and the original problem the strong duality property holds true.
Keywords: linear semidefinite programming; strong duality; normalised immobile index set; regularisation; constraint qualifications.
@article{BGUMI_2020_3_a1,
     author = {O. I. Kostyukova and T. V. Chemisova},
     title = {Linear semidefinite programming problems: regularisation and strong dual formulations},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {17--27},
     publisher = {mathdoc},
     volume = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a1/}
}
TY  - JOUR
AU  - O. I. Kostyukova
AU  - T. V. Chemisova
TI  - Linear semidefinite programming problems: regularisation and strong dual formulations
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2020
SP  - 17
EP  - 27
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a1/
LA  - en
ID  - BGUMI_2020_3_a1
ER  - 
%0 Journal Article
%A O. I. Kostyukova
%A T. V. Chemisova
%T Linear semidefinite programming problems: regularisation and strong dual formulations
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2020
%P 17-27
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a1/
%G en
%F BGUMI_2020_3_a1
O. I. Kostyukova; T. V. Chemisova. Linear semidefinite programming problems: regularisation and strong dual formulations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 17-27. http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a1/

[1] H. Wolkowicz, R. Saigal, L. Vandenberghe, “Handbook of semidefinite programming”, Theory, algorithms, and applications, 27 (2000), 654, New York: Springer | DOI | MR

[2] M. F. Anjos, J. B. Lasserre, “Handbook of semidefinite, conic and polynomial optimization”, 166, New York: Springer, 2012, 138 | DOI | MR

[3] K. O. Kortanek, Q. Zhang, “Perfect duality in semi-infinite and semidefinite programming”, Mathematical Programming, 91(1) (2001), 127–144 | DOI | MR | Zbl

[4] S. J. Li, X. Q. Yang, K. L. Teo, “Duality for semidefinite and semi-infinite programming”, Optimization, 52 (2003), 507–528 | DOI | MR | Zbl

[5] M. V. Solodov, “Constraint qualifications”, Wiley encyclopedia of operations research and management science, 2010, Hoboken: John Wiley and Sons | DOI

[6] M. V. Ramana, L. Tuncel, H. Wolkowicz, “Strong duality for semidefinite programming”, SIAM Journal on Optimization, 7(3) (1997), 641–662 | DOI | MR | Zbl

[7] L. Tuncel, H. Wolkowicz, “Strong duality and minimal representations for cone optimization”, Computational Optimization and Applications, 53(2) (2012), 619–648 | DOI | MR | Zbl

[8] H. Waki, M. Muramatsu, “Facial reduction algorithms for conic optimization problems”, Journal of Optimization Theory and Applications, 158(1) (2013), 188–215 | DOI | MR | Zbl

[9] D. Drusvyatskiy, H. Wolkowicz, “The many faces of degeneracy in conic optimization”, Foundations and Trends in Optimization, 3(2) (2017), 77–170 | DOI

[10] M. V. Ramana, “An exact duality theory for semidefinite programming and its complexity implications”, Mathematical Programming, 77(1) (1997), 129–162 | DOI | MR | Zbl

[11] O. I. Kostyukova, T. V. Tchemisova, “Optimality conditions for convex semi-infinite programming problems with finitely representable compact index sets”, Journal of Optimization Theory and Applications, 175(1) (2017), 76–103 | DOI | MR | Zbl

[12] O. I. Kostyukova, T. V. Tchemisova, “Optimality criteria without constraint qualification for linear semidefinite problems”, Journal of Mathematical Sciences, 182(2) (2012), 126–143 | DOI | MR | Zbl

[13] O. I. Kostyukova, T. V. Tchemisova, O. S. Dudina, “Immobile indices and CQ-free optimality criteria for linear copositive programming problems”, Set-Valued and Variational Analysis, 28 (2020), 89–107 | DOI | MR | Zbl

[14] V. L. Levin, “Application of E. Helly’s theorem to convex programming, problems of best approximation and related questions”, Mathematics of the USSR-Sbornik, 8(2) (1969), 235–247 | DOI | MR