Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BGUMI_2020_3_a1, author = {O. I. Kostyukova and T. V. Chemisova}, title = {Linear semidefinite programming problems: regularisation and strong dual formulations}, journal = {Journal of the Belarusian State University. Mathematics and Informatics}, pages = {17--27}, publisher = {mathdoc}, volume = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a1/} }
TY - JOUR AU - O. I. Kostyukova AU - T. V. Chemisova TI - Linear semidefinite programming problems: regularisation and strong dual formulations JO - Journal of the Belarusian State University. Mathematics and Informatics PY - 2020 SP - 17 EP - 27 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a1/ LA - en ID - BGUMI_2020_3_a1 ER -
%0 Journal Article %A O. I. Kostyukova %A T. V. Chemisova %T Linear semidefinite programming problems: regularisation and strong dual formulations %J Journal of the Belarusian State University. Mathematics and Informatics %D 2020 %P 17-27 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a1/ %G en %F BGUMI_2020_3_a1
O. I. Kostyukova; T. V. Chemisova. Linear semidefinite programming problems: regularisation and strong dual formulations. Journal of the Belarusian State University. Mathematics and Informatics, Tome 3 (2020), pp. 17-27. http://geodesic.mathdoc.fr/item/BGUMI_2020_3_a1/
[1] H. Wolkowicz, R. Saigal, L. Vandenberghe, “Handbook of semidefinite programming”, Theory, algorithms, and applications, 27 (2000), 654, New York: Springer | DOI | MR
[2] M. F. Anjos, J. B. Lasserre, “Handbook of semidefinite, conic and polynomial optimization”, 166, New York: Springer, 2012, 138 | DOI | MR
[3] K. O. Kortanek, Q. Zhang, “Perfect duality in semi-infinite and semidefinite programming”, Mathematical Programming, 91(1) (2001), 127–144 | DOI | MR | Zbl
[4] S. J. Li, X. Q. Yang, K. L. Teo, “Duality for semidefinite and semi-infinite programming”, Optimization, 52 (2003), 507–528 | DOI | MR | Zbl
[5] M. V. Solodov, “Constraint qualifications”, Wiley encyclopedia of operations research and management science, 2010, Hoboken: John Wiley and Sons | DOI
[6] M. V. Ramana, L. Tuncel, H. Wolkowicz, “Strong duality for semidefinite programming”, SIAM Journal on Optimization, 7(3) (1997), 641–662 | DOI | MR | Zbl
[7] L. Tuncel, H. Wolkowicz, “Strong duality and minimal representations for cone optimization”, Computational Optimization and Applications, 53(2) (2012), 619–648 | DOI | MR | Zbl
[8] H. Waki, M. Muramatsu, “Facial reduction algorithms for conic optimization problems”, Journal of Optimization Theory and Applications, 158(1) (2013), 188–215 | DOI | MR | Zbl
[9] D. Drusvyatskiy, H. Wolkowicz, “The many faces of degeneracy in conic optimization”, Foundations and Trends in Optimization, 3(2) (2017), 77–170 | DOI
[10] M. V. Ramana, “An exact duality theory for semidefinite programming and its complexity implications”, Mathematical Programming, 77(1) (1997), 129–162 | DOI | MR | Zbl
[11] O. I. Kostyukova, T. V. Tchemisova, “Optimality conditions for convex semi-infinite programming problems with finitely representable compact index sets”, Journal of Optimization Theory and Applications, 175(1) (2017), 76–103 | DOI | MR | Zbl
[12] O. I. Kostyukova, T. V. Tchemisova, “Optimality criteria without constraint qualification for linear semidefinite problems”, Journal of Mathematical Sciences, 182(2) (2012), 126–143 | DOI | MR | Zbl
[13] O. I. Kostyukova, T. V. Tchemisova, O. S. Dudina, “Immobile indices and CQ-free optimality criteria for linear copositive programming problems”, Set-Valued and Variational Analysis, 28 (2020), 89–107 | DOI | MR | Zbl
[14] V. L. Levin, “Application of E. Helly’s theorem to convex programming, problems of best approximation and related questions”, Mathematics of the USSR-Sbornik, 8(2) (1969), 235–247 | DOI | MR